/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "SimpleConstraintSolver.h" #include "NarrowPhaseCollision/PersistentManifold.h" #include "Dynamics/RigidBody.h" #include "ContactConstraint.h" #include "Solve2LinearConstraint.h" #include "ContactSolverInfo.h" #include "Dynamics/BU_Joint.h" #include "Dynamics/ContactJoint.h" #include "IDebugDraw.h" #include "JacobianEntry.h" #include "GEN_MinMax.h" #ifdef USE_PROFILE #include "quickprof.h" #endif //USE_PROFILE int totalCpd = 0; bool MyContactDestroyedCallback(void* userPersistentData) { assert (userPersistentData); ConstraintPersistentData* cpd = (ConstraintPersistentData*)userPersistentData; delete cpd; totalCpd--; //printf("totalCpd = %i. DELETED Ptr %x\n",totalCpd,userPersistentData); return true; } SimpleConstraintSolver::SimpleConstraintSolver() { gContactCallback = &MyContactDestroyedCallback; } /// SimpleConstraintSolver Sequentially applies impulses float SimpleConstraintSolver::SolveGroup(PersistentManifold** manifoldPtr, int numManifolds,const ContactSolverInfo& infoGlobal,IDebugDraw* debugDrawer) { ContactSolverInfo info = infoGlobal; int numiter = infoGlobal.m_numIterations; #ifdef USE_PROFILE Profiler::beginBlock("Solve"); #endif //USE_PROFILE //should traverse the contacts random order... int i; for ( i = 0;iGetBody0(); RigidBody* body1 = (RigidBody*)manifoldPtr->GetBody1(); float maxImpulse = 0.f; //only necessary to refresh the manifold once (first iteration). The integration is done outside the loop if (iter == 0) { manifoldPtr->RefreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform()); int numpoints = manifoldPtr->GetNumContacts(); SimdVector3 color(0,1,0); for (int i=0;iGetContactPoint(i); if (cp.GetDistance() <= 0.f) { const SimdVector3& pos1 = cp.GetPositionWorldOnA(); const SimdVector3& pos2 = cp.GetPositionWorldOnB(); SimdVector3 rel_pos1 = pos1 - body0->getCenterOfMassPosition(); SimdVector3 rel_pos2 = pos2 - body1->getCenterOfMassPosition(); //this jacobian entry is re-used for all iterations JacobianEntry jac(body0->getCenterOfMassTransform().getBasis().transpose(), body1->getCenterOfMassTransform().getBasis().transpose(), rel_pos1,rel_pos2,cp.m_normalWorldOnB,body0->getInvInertiaDiagLocal(),body0->getInvMass(), body1->getInvInertiaDiagLocal(),body1->getInvMass()); SimdScalar jacDiagAB = jac.getDiagonal(); ConstraintPersistentData* cpd = (ConstraintPersistentData*) cp.m_userPersistentData; if (cpd) { //might be invalid cpd->m_persistentLifeTime++; if (cpd->m_persistentLifeTime != cp.GetLifeTime()) { //printf("Invalid: cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.GetLifeTime()); new (cpd) ConstraintPersistentData; cpd->m_persistentLifeTime = cp.GetLifeTime(); } else { //printf("Persistent: cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.GetLifeTime()); } } else { cpd = new ConstraintPersistentData(); totalCpd ++; //printf("totalCpd = %i Created Ptr %x\n",totalCpd,cpd); cp.m_userPersistentData = cpd; cpd->m_persistentLifeTime = cp.GetLifeTime(); //printf("CREATED: %x . cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd,cpd->m_persistentLifeTime,cp.GetLifeTime()); } assert(cpd); cpd->m_jacDiagABInv = 1.f / jacDiagAB; SimdVector3 vel1 = body0->getVelocityInLocalPoint(rel_pos1); SimdVector3 vel2 = body1->getVelocityInLocalPoint(rel_pos2); SimdVector3 vel = vel1 - vel2; SimdScalar rel_vel; rel_vel = cp.m_normalWorldOnB.dot(vel); float combinedRestitution = body0->getRestitution() * body1->getRestitution(); cpd->m_penetration = cp.GetDistance(); cpd->m_restitution = restitutionCurve(rel_vel, combinedRestitution); if (cpd->m_restitution <= 0.) //0.f) { cpd->m_restitution = 0.0f; }; //restitution and penetration work in same direction so //rel_vel SimdScalar penVel = -cpd->m_penetration/info.m_timeStep; if (cpd->m_restitution >= penVel) { cpd->m_penetration = 0.f; } float relaxation = info.m_damping; cpd->m_appliedImpulse *= relaxation; //for friction cpd->m_prevAppliedImpulse = cpd->m_appliedImpulse; //re-calculate friction direction every frame, todo: check if this is really needed SimdPlaneSpace1(cp.m_normalWorldOnB,cpd->m_frictionWorldTangential0,cpd->m_frictionWorldTangential1); #define NO_FRICTION_WARMSTART 1 #ifdef NO_FRICTION_WARMSTART cpd->m_accumulatedTangentImpulse0 = 0.f; cpd->m_accumulatedTangentImpulse1 = 0.f; #endif //NO_FRICTION_WARMSTART float denom0 = body0->ComputeImpulseDenominator(pos1,cpd->m_frictionWorldTangential0); float denom1 = body1->ComputeImpulseDenominator(pos2,cpd->m_frictionWorldTangential0); float denom = relaxation/(denom0+denom1); cpd->m_jacDiagABInvTangent0 = denom; denom0 = body0->ComputeImpulseDenominator(pos1,cpd->m_frictionWorldTangential1); denom1 = body1->ComputeImpulseDenominator(pos2,cpd->m_frictionWorldTangential1); denom = relaxation/(denom0+denom1); cpd->m_jacDiagABInvTangent1 = denom; SimdVector3 totalImpulse = #ifndef NO_FRICTION_WARMSTART cp.m_frictionWorldTangential0*cp.m_accumulatedTangentImpulse0+ cp.m_frictionWorldTangential1*cp.m_accumulatedTangentImpulse1+ #endif //NO_FRICTION_WARMSTART cp.m_normalWorldOnB*cpd->m_appliedImpulse; //apply previous frames impulse on both bodies body0->applyImpulse(totalImpulse, rel_pos1); body1->applyImpulse(-totalImpulse, rel_pos2); } } } { const int numpoints = manifoldPtr->GetNumContacts(); SimdVector3 color(0,1,0); for (int i=0;iGetContactPoint(j); if (cp.GetDistance() <= 0.f) { if (iter == 0) { if (debugDrawer) debugDrawer->DrawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.GetDistance(),cp.GetLifeTime(),color); } { //float dist = cp.GetDistance(); //printf("dist(%i)=%f\n",j,dist); float impulse = resolveSingleCollision( *body0,*body1, cp, info); if (maxImpulse < impulse) maxImpulse = impulse; } } } } return maxImpulse; } float SimpleConstraintSolver::SolveFriction(PersistentManifold* manifoldPtr, const ContactSolverInfo& info,int iter,IDebugDraw* debugDrawer) { RigidBody* body0 = (RigidBody*)manifoldPtr->GetBody0(); RigidBody* body1 = (RigidBody*)manifoldPtr->GetBody1(); { const int numpoints = manifoldPtr->GetNumContacts(); SimdVector3 color(0,1,0); for (int i=0;iGetContactPoint(j); if (cp.GetDistance() <= 0.f) { resolveSingleFriction( *body0,*body1, cp, info); } } } return 0.f; }