/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ ///btDbvt implementation by Nathanael Presson #include "btDbvt.h" // typedef btAlignedObjectArray tNodeArray; typedef btAlignedObjectArray tConstNodeArray; // struct btDbvtNodeEnumerator : btDbvt::ICollide { tConstNodeArray nodes; void Process(const btDbvt::Node* n) { nodes.push_back(n); } }; // static inline int indexof(const btDbvt::Node* node) { return(node->parent->childs[1]==node); } // static inline btDbvt::Volume merge( const btDbvt::Volume& a, const btDbvt::Volume& b) { btDbvt::Volume res; Merge(a,b,res); return(res); } // volume+edge lengths static inline btScalar size(const btDbvt::Volume& a) { const btVector3 edges=a.Lengths(); return( edges.x()*edges.y()*edges.z()+ edges.x()+edges.y()+edges.z()); } // static inline void deletenode( btDbvt* pdbvt, btDbvt::Node* node) { btAlignedFree(pdbvt->m_free); pdbvt->m_free=node; } // static inline void recursedeletenode( btDbvt* pdbvt, btDbvt::Node* node) { if(!node->isleaf()) { recursedeletenode(pdbvt,node->childs[0]); recursedeletenode(pdbvt,node->childs[1]); } if(node==pdbvt->m_root) pdbvt->m_root=0; deletenode(pdbvt,node); } // static inline btDbvt::Node* createnode( btDbvt* pdbvt, btDbvt::Node* parent, const btDbvt::Volume& volume, void* data) { btDbvt::Node* node; if(pdbvt->m_free) { node=pdbvt->m_free;pdbvt->m_free=0; } else { node=new(btAlignedAlloc(sizeof(btDbvt::Node),16)) btDbvt::Node(); } node->parent = parent; node->volume = volume; node->data = data; node->childs[1] = 0; return(node); } // static inline void insertleaf( btDbvt* pdbvt, btDbvt::Node* root, btDbvt::Node* leaf) { if(!pdbvt->m_root) { pdbvt->m_root = leaf; leaf->parent = 0; } else { if(!root->isleaf()) { do { if( Proximity(root->childs[0]->volume,leaf->volume)< Proximity(root->childs[1]->volume,leaf->volume)) root=root->childs[0]; else root=root->childs[1]; } while(!root->isleaf()); } btDbvt::Node* prev=root->parent; btDbvt::Node* node=createnode(pdbvt,prev,merge(leaf->volume,root->volume),0); if(prev) { prev->childs[indexof(root)] = node; node->childs[0] = root;root->parent=node; node->childs[1] = leaf;leaf->parent=node; do { if(!prev->volume.Contain(node->volume)) Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume); else break; node=prev; } while(0!=(prev=node->parent)); } else { node->childs[0] = root;root->parent=node; node->childs[1] = leaf;leaf->parent=node; pdbvt->m_root = node; } } } // static inline btDbvt::Node* removeleaf( btDbvt* pdbvt, btDbvt::Node* leaf) { if(leaf==pdbvt->m_root) { pdbvt->m_root=0; return(0); } else { btDbvt::Node* parent=leaf->parent; btDbvt::Node* prev=parent->parent; btDbvt::Node* sibling=parent->childs[1-indexof(leaf)]; if(prev) { prev->childs[indexof(parent)]=sibling; sibling->parent=prev; deletenode(pdbvt,parent); while(prev) { const btDbvt::Volume pb=prev->volume; Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume); if(NotEqual(pb,prev->volume)) { sibling = prev; prev = prev->parent; } else break; } return(prev?prev:pdbvt->m_root); } else { pdbvt->m_root=sibling; sibling->parent=0; deletenode(pdbvt,parent); return(pdbvt->m_root); } } } // static void fetchleafs( btDbvt* pdbvt, btDbvt::Node* root, tNodeArray& leafs, int depth=-1) { if(root->isinternal()&&depth) { fetchleafs(pdbvt,root->childs[0],leafs,depth-1); fetchleafs(pdbvt,root->childs[1],leafs,depth-1); deletenode(pdbvt,root); } else { leafs.push_back(root); } } // static void split( const tNodeArray& leafs, tNodeArray& left, tNodeArray& right, const btVector3& org, const btVector3& axis) { left.resize(0); right.resize(0); for(int i=0,ni=leafs.size();ivolume.Center()-org)<0) left.push_back(leafs[i]); else right.push_back(leafs[i]); } } // static btDbvt::Volume bounds( const tNodeArray& leafs) { btDbvt::Volume volume=leafs[0]->volume; for(int i=1,ni=leafs.size();ivolume); } return(volume); } // static void bottomup( btDbvt* pdbvt, tNodeArray& leafs) { while(leafs.size()>1) { btScalar minsize=SIMD_INFINITY; int minidx[2]={-1,-1}; for(int i=0;ivolume,leafs[j]->volume)); if(szvolume,n[1]->volume),0); p->childs[0] = n[0]; p->childs[1] = n[1]; n[0]->parent = p; n[1]->parent = p; leafs[minidx[0]] = p; leafs.swap(minidx[1],leafs.size()-1); leafs.pop_back(); } } // static btDbvt::Node* topdown(btDbvt* pdbvt, tNodeArray& leafs, int bu_treshold) { static const btVector3 axis[]={btVector3(1,0,0), btVector3(0,1,0), btVector3(0,0,1)}; if(leafs.size()>1) { if(leafs.size()>bu_treshold) { const btDbvt::Volume vol=bounds(leafs); const btVector3 org=vol.Center(); tNodeArray sets[2]; int bestaxis=-1; int bestmidp=leafs.size(); int splitcount[3][2]={{0,0},{0,0},{0,0}}; for(int i=0;ivolume.Center()-org; for(int j=0;j<3;++j) { ++splitcount[j][dot(x,axis[j])>0?1:0]; } } for(int i=0;i<3;++i) { if((splitcount[i][0]>0)&&(splitcount[i][1]>0)) { const int midp=(int)btFabs(btScalar(splitcount[i][0]-splitcount[i][1])); if(midp=0) { sets[0].reserve(splitcount[bestaxis][0]); sets[1].reserve(splitcount[bestaxis][1]); split(leafs,sets[0],sets[1],org,axis[bestaxis]); } else { sets[0].reserve(leafs.size()/2+1); sets[1].reserve(leafs.size()/2); for(int i=0,ni=leafs.size();ichilds[0]=topdown(pdbvt,sets[0],bu_treshold); node->childs[1]=topdown(pdbvt,sets[1],bu_treshold); node->childs[0]->parent=node; node->childs[1]->parent=node; return(node); } else { bottomup(pdbvt,leafs); return(leafs[0]); } } return(leafs[0]); } // static inline btDbvt::Node* refit( btDbvt* pdbvt, btDbvt::Node* node) { btDbvt::Node* parent=node->parent; if(parent) { const int idx=indexof(node); tNodeArray leafs; leafs.reserve(64); fetchleafs(pdbvt,node,leafs,3); if(leafs.size()>=2) { bottomup(pdbvt,leafs); node=leafs[0]; node->parent=parent; parent->childs[idx]=node; } } return(node); } // // Api // // btDbvt::btDbvt() { m_root = 0; m_free = 0; m_lkhd = -1; m_leafs = 0; m_opath = 0; } // btDbvt::~btDbvt() { clear(); } // void btDbvt::clear() { if(m_root) recursedeletenode(this,m_root); btAlignedFree(m_free); m_free=0; } // void btDbvt::optimizeBottomUp() { if(m_root) { tNodeArray leafs; leafs.reserve(m_leafs); fetchleafs(this,m_root,leafs); bottomup(this,leafs); m_root=leafs[0]; } } // void btDbvt::optimizeTopDown(int bu_treshold) { if(m_root) { tNodeArray leafs; leafs.reserve(m_leafs); fetchleafs(this,m_root,leafs); m_root=topdown(this,leafs,bu_treshold); } } // void btDbvt::optimizeIncremental(int passes) { if(m_root&&(passes>0)) { do { Node* node=m_root; unsigned bit=0; while(node->isinternal()) { node=node->childs[(m_opath>>bit)&1]; bit=(bit+1)&(sizeof(unsigned)*8-1); } update(node); ++m_opath; } while(--passes); } } // btDbvt::Node* btDbvt::insert(const Volume& volume,void* data) { Node* leaf=createnode(this,0,volume,data); insertleaf(this,m_root,leaf); ++m_leafs; return(leaf); } // void btDbvt::update(Node* leaf,int lookahead) { Node* root=removeleaf(this,leaf); if(root) { if(lookahead>=0) { for(int i=0;(iparent;++i) { root=root->parent; } } else root=m_root; } insertleaf(this,root,leaf); } // void btDbvt::update(Node* leaf,const Volume& volume) { Node* root=removeleaf(this,leaf); if(root) { if(m_lkhd>=0) { for(int i=0;(iparent;++i) { root=root->parent; } } else root=m_root; } leaf->volume=volume; insertleaf(this,root,leaf); } // bool btDbvt::update(Node* leaf,Volume volume,const btVector3& velocity,btScalar margin) { if(leaf->volume.Contain(volume)) return(false); volume.Expand(btVector3(margin,margin,margin)); volume.SignedExpand(velocity); update(leaf,volume); return(true); } // bool btDbvt::update(Node* leaf,Volume volume,const btVector3& velocity) { if(leaf->volume.Contain(volume)) return(false); volume.SignedExpand(velocity); update(leaf,volume); return(true); } // bool btDbvt::update(Node* leaf,Volume volume,btScalar margin) { if(leaf->volume.Contain(volume)) return(false); volume.Expand(btVector3(margin,margin,margin)); update(leaf,volume); return(true); } // void btDbvt::remove(Node* leaf) { removeleaf(this,leaf); deletenode(this,leaf); --m_leafs; } // void btDbvt::write(IWriter* iwriter) const { btDbvtNodeEnumerator nodes; nodes.nodes.reserve(m_leafs*2); enumNodes(m_root,nodes); iwriter->Prepare(m_root,nodes.nodes.size()); for(int i=0;iparent) p=nodes.nodes.findLinearSearch(n->parent); if(n->isinternal()) { const int c0=nodes.nodes.findLinearSearch(n->childs[0]); const int c1=nodes.nodes.findLinearSearch(n->childs[1]); iwriter->WriteNode(n,i,p,c0,c1); } else { iwriter->WriteLeaf(n,i,p); } } }