/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ EPA Copyright (c) Ricardo Padrela 2006 This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "LinearMath/btScalar.h" #include "LinearMath/btVector3.h" #include "LinearMath/btPoint3.h" #include "LinearMath/btTransform.h" #include "LinearMath/btSimdMinMax.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include #include #include #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" #include "NarrowPhaseCollision/EpaCommon.h" #include "NarrowPhaseCollision/EpaVertex.h" #include "NarrowPhaseCollision/EpaHalfEdge.h" #include "NarrowPhaseCollision/EpaFace.h" #include "NarrowPhaseCollision/EpaPolyhedron.h" #include "NarrowPhaseCollision/Epa.h" const btScalar EPA_MAX_RELATIVE_ERROR = 1e-2f; const btScalar EPA_MAX_RELATIVE_ERROR_SQRD = EPA_MAX_RELATIVE_ERROR * EPA_MAX_RELATIVE_ERROR; Epa::Epa( btConvexShape* pConvexShapeA, btConvexShape* pConvexShapeB, const btTransform& transformA, const btTransform& transformB ) : m_pConvexShapeA( pConvexShapeA ), m_pConvexShapeB( pConvexShapeB ), m_transformA( transformA ), m_transformB( transformB ) { m_faceEntries.reserve( EPA_MAX_FACE_ENTRIES ); } Epa::~Epa() { } bool Epa::Initialize( btSimplexSolverInterface& simplexSolver ) { // Run GJK on the enlarged shapes to obtain a simplex of the enlarged CSO btVector3 v( 1, 0, 0 ); btScalar squaredDistance = SIMD_INFINITY; btScalar delta = 0.f; simplexSolver.reset(); int nbIterations = 0; while ( true ) { EPA_DEBUG_ASSERT( ( v.length2() > 0 ) ,"Warning : v has zero magnitude!" ); btVector3 seperatingAxisInA = -v * m_transformA.getBasis(); btVector3 seperatingAxisInB = v * m_transformB.getBasis(); btVector3 pInA = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); btVector3 qInB = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); btPoint3 pWorld = m_transformA( pInA ); btPoint3 qWorld = m_transformB( qInB ); btVector3 w = pWorld - qWorld; delta = v.dot( w ); EPA_DEBUG_ASSERT( ( delta <= 0 ) ,"Shapes are disjoint, EPA should have never been called!" ); if ( delta > 0.f ) return false; EPA_DEBUG_ASSERT( !simplexSolver.inSimplex( w ) ,"Shapes are disjoint, EPA should have never been called!" ); if (simplexSolver.inSimplex( w )) return false; // Add support point to simplex simplexSolver.addVertex( w, pWorld, qWorld ); bool closestOk = simplexSolver.closest( v ); EPA_DEBUG_ASSERT( closestOk ,"Shapes are disjoint, EPA should have never been called!" ); if (!closestOk) return false; btScalar prevVSqrd = squaredDistance; squaredDistance = v.length2(); // Is v converging to v(A-B) ? EPA_DEBUG_ASSERT( ( ( prevVSqrd - squaredDistance ) > SIMD_EPSILON * prevVSqrd ) , "Shapes are disjoint, EPA should have never been called!" ); if (( ( prevVSqrd - squaredDistance ) <= SIMD_EPSILON * prevVSqrd )) return false; if ( simplexSolver.fullSimplex() || ( squaredDistance <= SIMD_EPSILON * simplexSolver.maxVertex() ) ) { break; } ++nbIterations; } btPoint3 simplexPoints[ 5 ]; btPoint3 wSupportPointsOnA[ 5 ]; btPoint3 wSupportPointsOnB[ 5 ]; int nbSimplexPoints = simplexSolver.getSimplex( wSupportPointsOnA, wSupportPointsOnB, simplexPoints ); // nbSimplexPoints can't be one because cases where the origin is on the boundary are handled // by hybrid penetration depth EPA_DEBUG_ASSERT( ( ( nbSimplexPoints > 1 ) ,( nbSimplexPoints <= 4 ) ) , "Hybrid Penetration Depth algorithm failed!" ); int nbPolyhedronPoints = nbSimplexPoints; #ifndef EPA_POLYHEDRON_USE_PLANES int initTetraIndices[ 4 ] = { 0, 1, 2, 3 }; #endif // Prepare initial polyhedron to start EPA from if ( nbSimplexPoints == 1 ) { return false; } else if ( nbSimplexPoints == 2 ) { // We have a line segment inside the CSO that contains the origin // Create an hexahedron ( two tetrahedron glued together ) by adding 3 new points btVector3 d = simplexPoints[ 0 ] - simplexPoints[ 1 ]; d.normalize(); btVector3 v1; btVector3 v2; btVector3 v3; btVector3 e1; btScalar absx = abs( d.getX() ); btScalar absy = abs( d.getY() ); btScalar absz = abs( d.getZ() ); if ( absx < absy ) { if ( absx < absz ) { e1.setX( 1 ); } else { e1.setZ( 1 ); } } else { if ( absy < absz ) { e1.setY( 1 ); } else { e1.setZ( 1 ); } } v1 = d.cross( e1 ); v1.normalize(); v2 = v1.rotate( d, 120 * SIMD_RADS_PER_DEG ); v3 = v2.rotate( d, 120 * SIMD_RADS_PER_DEG ); nbPolyhedronPoints = 5; btVector3 seperatingAxisInA = v1 * m_transformA.getBasis(); btVector3 seperatingAxisInB = -v1 * m_transformB.getBasis(); btVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); btVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); btPoint3 pWorld = m_transformA( p ); btPoint3 qWorld = m_transformB( q ); wSupportPointsOnA[ 2 ] = pWorld; wSupportPointsOnB[ 2 ] = qWorld; simplexPoints[ 2 ] = wSupportPointsOnA[ 2 ] - wSupportPointsOnB[ 2 ]; seperatingAxisInA = v2 * m_transformA.getBasis(); seperatingAxisInB = -v2 * m_transformB.getBasis(); p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); pWorld = m_transformA( p ); qWorld = m_transformB( q ); wSupportPointsOnA[ 3 ] = pWorld; wSupportPointsOnB[ 3 ] = qWorld; simplexPoints[ 3 ] = wSupportPointsOnA[ 3 ] - wSupportPointsOnB[ 3 ]; seperatingAxisInA = v3 * m_transformA.getBasis(); seperatingAxisInB = -v3 * m_transformB.getBasis(); p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); pWorld = m_transformA( p ); qWorld = m_transformB( q ); wSupportPointsOnA[ 4 ] = pWorld; wSupportPointsOnB[ 4 ] = qWorld; simplexPoints[ 4 ] = wSupportPointsOnA[ 4 ] - wSupportPointsOnB[ 4 ]; #ifndef EPA_POLYHEDRON_USE_PLANES if ( TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 2 ], simplexPoints[ 3 ], simplexPoints[ 4 ] ) ) { initTetraIndices[ 1 ] = 2; initTetraIndices[ 2 ] = 3; initTetraIndices[ 3 ] = 4; } else { if ( TetrahedronContainsOrigin( simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 3 ], simplexPoints[ 4 ] ) ) { initTetraIndices[ 0 ] = 1; initTetraIndices[ 1 ] = 2; initTetraIndices[ 2 ] = 3; initTetraIndices[ 3 ] = 4; } else { // No tetrahedron contains the origin assert( false && "Unable to find an initial tetrahedron that contains the origin!" ); return false; } } #endif } else if ( nbSimplexPoints == 3 ) { // We have a triangle inside the CSO that contains the origin // Create an hexahedron ( two tetrahedron glued together ) by adding 2 new points btVector3 v0 = simplexPoints[ 2 ] - simplexPoints[ 0 ]; btVector3 v1 = simplexPoints[ 1 ] - simplexPoints[ 0 ]; btVector3 triangleNormal = v0.cross( v1 ); triangleNormal.normalize(); nbPolyhedronPoints = 5; btVector3 seperatingAxisInA = triangleNormal * m_transformA.getBasis(); btVector3 seperatingAxisInB = -triangleNormal * m_transformB.getBasis(); btVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); btVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); btPoint3 pWorld = m_transformA( p ); btPoint3 qWorld = m_transformB( q ); wSupportPointsOnA[ 3 ] = pWorld; wSupportPointsOnB[ 3 ] = qWorld; simplexPoints[ 3 ] = wSupportPointsOnA[ 3 ] - wSupportPointsOnB[ 3 ]; #ifndef EPA_POLYHEDRON_USE_PLANES // We place this check here because if the tetrahedron contains the origin // there is no need to sample another support point if ( !TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 3 ] ) ) { #endif seperatingAxisInA = -triangleNormal * m_transformA.getBasis(); seperatingAxisInB = triangleNormal * m_transformB.getBasis(); p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); pWorld = m_transformA( p ); qWorld = m_transformB( q ); wSupportPointsOnA[ 4 ] = pWorld; wSupportPointsOnB[ 4 ] = qWorld; simplexPoints[ 4 ] = wSupportPointsOnA[ 4 ] - wSupportPointsOnB[ 4 ]; #ifndef EPA_POLYHEDRON_USE_PLANES if ( TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 4 ] ) ) { initTetraIndices[ 3 ] = 4; } else { // No tetrahedron contains the origin assert( false && "Unable to find an initial tetrahedron that contains the origin!" ); return false; } } #endif } #ifdef _DEBUG else if ( nbSimplexPoints == 4 ) { EPA_DEBUG_ASSERT( TetrahedronContainsOrigin( simplexPoints ) ,"Initial tetrahedron does not contain the origin!" ); } #endif #ifndef EPA_POLYHEDRON_USE_PLANES btPoint3 wTetraPoints[ 4 ] = { simplexPoints[ initTetraIndices[ 0 ] ], simplexPoints[ initTetraIndices[ 1 ] ], simplexPoints[ initTetraIndices[ 2 ] ], simplexPoints[ initTetraIndices[ 3 ] ] }; btPoint3 wTetraSupportPointsOnA[ 4 ] = { wSupportPointsOnA[ initTetraIndices[ 0 ] ], wSupportPointsOnA[ initTetraIndices[ 1 ] ], wSupportPointsOnA[ initTetraIndices[ 2 ] ], wSupportPointsOnA[ initTetraIndices[ 3 ] ] }; btPoint3 wTetraSupportPointsOnB[ 4 ] = { wSupportPointsOnB[ initTetraIndices[ 0 ] ], wSupportPointsOnB[ initTetraIndices[ 1 ] ], wSupportPointsOnB[ initTetraIndices[ 2 ] ], wSupportPointsOnB[ initTetraIndices[ 3 ] ] }; #endif #ifdef EPA_POLYHEDRON_USE_PLANES if ( !m_polyhedron.Create( simplexPoints, wSupportPointsOnA, wSupportPointsOnB, nbPolyhedronPoints ) ) #else if ( !m_polyhedron.Create( wTetraPoints, wTetraSupportPointsOnA, wTetraSupportPointsOnB, 4 ) ) #endif { // Failed to create initial polyhedron EPA_DEBUG_ASSERT( false ,"Failed to create initial polyhedron!" ); return false; } // Add initial faces to priority queue #ifdef _DEBUG //m_polyhedron._dbgSaveToFile( "epa_start.dbg" ); #endif std::list< EpaFace* >& faces = m_polyhedron.GetFaces(); std::list< EpaFace* >::iterator facesItr( faces.begin() ); while ( facesItr != faces.end() ) { EpaFace* pFace = *facesItr; if ( !pFace->m_deleted ) { //#ifdef EPA_POLYHEDRON_USE_PLANES // if ( pFace->m_planeDistance >= 0 ) // { // m_polyhedron._dbgSaveToFile( "epa_start.dbg" ); // assert( false && "Face's plane distance equal or greater than 0!" ); // } //#endif if ( pFace->IsAffinelyDependent() ) { EPA_DEBUG_ASSERT( false ,"One initial face is affinely dependent!" ); return false; } if ( pFace->m_vSqrd <= 0 ) { EPA_DEBUG_ASSERT( false ,"Face containing the origin!" ); return false; } if ( pFace->IsClosestPointInternal() ) { m_faceEntries.push_back( pFace ); std::push_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries ); } } ++facesItr; } #ifdef _DEBUG //m_polyhedron._dbgSaveToFile( "epa_start.dbg" ); #endif EPA_DEBUG_ASSERT( !m_faceEntries.empty() ,"No faces added to heap!" ); return true; } btScalar Epa::CalcPenDepth( btPoint3& wWitnessOnA, btPoint3& wWitnessOnB ) { btVector3 v; btScalar upperBoundSqrd = SIMD_INFINITY; btScalar vSqrd = 0; #ifdef _DEBUG btScalar prevVSqrd; #endif btScalar delta; bool isCloseEnough = false; EpaFace* pEpaFace = NULL; int nbIterations = 0; //int nbMaxIterations = 1000; do { pEpaFace = m_faceEntries.front(); std::pop_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries ); m_faceEntries.pop_back(); if ( !pEpaFace->m_deleted ) { #ifdef _DEBUG prevVSqrd = vSqrd; #endif vSqrd = pEpaFace->m_vSqrd; if ( pEpaFace->m_planeDistance >= 0 ) { v = pEpaFace->m_planeNormal; } else { v = pEpaFace->m_v; } #ifdef _DEBUG //assert_msg( vSqrd <= upperBoundSqrd, "A triangle was falsely rejected!" ); EPA_DEBUG_ASSERT( ( vSqrd >= prevVSqrd ) ,"vSqrd decreased!" ); #endif //_DEBUG EPA_DEBUG_ASSERT( ( v.length2() > 0 ) ,"Zero vector not allowed!" ); btVector3 seperatingAxisInA = v * m_transformA.getBasis(); btVector3 seperatingAxisInB = -v * m_transformB.getBasis(); btVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA ); btVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB ); btPoint3 pWorld = m_transformA( p ); btPoint3 qWorld = m_transformB( q ); btPoint3 w = pWorld - qWorld; delta = v.dot( w ); // Keep tighest upper bound upperBoundSqrd = btMin( upperBoundSqrd, delta * delta / vSqrd ); //assert_msg( vSqrd <= upperBoundSqrd, "A triangle was falsely rejected!" ); isCloseEnough = ( upperBoundSqrd <= ( 1 + 1e-4f ) * vSqrd ); if ( !isCloseEnough ) { std::list< EpaFace* > newFaces; bool expandOk = m_polyhedron.Expand( w, pWorld, qWorld, pEpaFace, newFaces ); if ( expandOk ) { EPA_DEBUG_ASSERT( !newFaces.empty() ,"EPA polyhedron not expanding ?" ); bool check = true; bool areEqual = false; while ( !newFaces.empty() ) { EpaFace* pNewFace = newFaces.front(); EPA_DEBUG_ASSERT( !pNewFace->m_deleted ,"New face is deleted!" ); if ( !pNewFace->m_deleted ) { EPA_DEBUG_ASSERT( ( pNewFace->m_vSqrd > 0 ) ,"Face containing the origin!" ); EPA_DEBUG_ASSERT( !pNewFace->IsAffinelyDependent() ,"Face is affinely dependent!" ); //#ifdef EPA_POLYHEDRON_USE_PLANES //// if ( pNewFace->m_planeDistance >= 0 ) //// { // // assert( false && "Face's plane distance greater than 0!" ); //#ifdef _DEBUG //// m_polyhedron._dbgSaveToFile( "epa_beforeFix.dbg" ); //#endif // //pNewFace->FixOrder(); //#ifdef _DEBUG // //m_polyhedron._dbgSaveToFile( "epa_afterFix.dbg" ); //#endif //// } //#endif // //#ifdef EPA_POLYHEDRON_USE_PLANES // //assert( ( pNewFace->m_planeDistance < 0 ) && "Face's plane distance equal or greater than 0!" ); //#endif if ( pNewFace->IsClosestPointInternal() && ( vSqrd <= pNewFace->m_vSqrd ) && ( pNewFace->m_vSqrd <= upperBoundSqrd ) ) { m_faceEntries.push_back( pNewFace ); std::push_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries ); } } newFaces.pop_front(); } } else { pEpaFace->CalcClosestPointOnA( wWitnessOnA ); pEpaFace->CalcClosestPointOnB( wWitnessOnB ); #ifdef _DEBUG //m_polyhedron._dbgSaveToFile( "epa_end.dbg" ); #endif return v.length(); } } } ++nbIterations; } while ( ( m_polyhedron.GetNbFaces() < EPA_MAX_FACE_ENTRIES ) &&/*( nbIterations < nbMaxIterations ) &&*/ !isCloseEnough && ( m_faceEntries.size() > 0 ) && ( m_faceEntries[ 0 ]->m_vSqrd <= upperBoundSqrd ) ); #ifdef _DEBUG //m_polyhedron._dbgSaveToFile( "epa_end.dbg" ); #endif EPA_DEBUG_ASSERT( pEpaFace ,"Invalid epa face!" ); pEpaFace->CalcClosestPointOnA( wWitnessOnA ); pEpaFace->CalcClosestPointOnB( wWitnessOnB ); return v.length(); } bool Epa::TetrahedronContainsOrigin( const btPoint3& point0, const btPoint3& point1, const btPoint3& point2, const btPoint3& point3 ) { btVector3 facesNormals[ 4 ] = { ( point1 - point0 ).cross( point2 - point0 ), ( point2 - point1 ).cross( point3 - point1 ), ( point3 - point2 ).cross( point0 - point2 ), ( point0 - point3 ).cross( point1 - point3 ) }; return ( ( facesNormals[ 0 ].dot( point0 ) > 0 ) != ( facesNormals[ 0 ].dot( point3 ) > 0 ) ) && ( ( facesNormals[ 1 ].dot( point1 ) > 0 ) != ( facesNormals[ 1 ].dot( point0 ) > 0 ) ) && ( ( facesNormals[ 2 ].dot( point2 ) > 0 ) != ( facesNormals[ 2 ].dot( point1 ) > 0 ) ) && ( ( facesNormals[ 3 ].dot( point3 ) > 0 ) != ( facesNormals[ 3 ].dot( point2 ) > 0 ) ); } bool Epa::TetrahedronContainsOrigin( btPoint3* pPoints ) { return TetrahedronContainsOrigin( pPoints[ 0 ], pPoints[ 1 ], pPoints[ 2 ], pPoints[ 3 ] ); } bool CompareEpaFaceEntries( EpaFace* pFaceA, EpaFace* pFaceB ) { return ( pFaceA->m_vSqrd > pFaceB->m_vSqrd ); }