# Copyright 2017 The TensorFlow Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Count learnable parameters.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np import tensorflow as tf def count_weights(scope=None, exclude=None, graph=None): """Count learnable parameters. Args: scope: Resrict the count to a variable scope. exclude: Regex to match variable names to exclude. graph: Operate on a graph other than the current default graph. Returns: Number of learnable parameters as integer. """ if scope: scope = scope if scope.endswith('/') else scope + '/' graph = graph or tf.get_default_graph() vars_ = graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if scope: vars_ = [var for var in vars_ if var.name.startswith(scope)] if exclude: exclude = re.compile(exclude) vars_ = [var for var in vars_ if not exclude.match(var.name)] shapes = [var.get_shape().as_list() for var in vars_] return int(sum(np.prod(shape) for shape in shapes))