# Copyright 2017 The TensorFlow Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compute a streaming estimation of the mean of submitted tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class StreamingMean(object): """Compute a streaming estimation of the mean of submitted tensors.""" def __init__(self, shape, dtype): """Specify the shape and dtype of the mean to be estimated. Note that a float mean to zero submitted elements is NaN, while computing the integer mean of zero elements raises a division by zero error. Args: shape: Shape of the mean to compute. dtype: Data type of the mean to compute. """ self._dtype = dtype self._sum = tf.Variable(lambda: tf.zeros(shape, dtype), False) self._count = tf.Variable(lambda: 0, trainable=False) @property def value(self): """The current value of the mean.""" return self._sum / tf.cast(self._count, self._dtype) @property def count(self): """The number of submitted samples.""" return self._count def submit(self, value): """Submit a single or batch tensor to refine the streaming mean.""" # Add a batch dimension if necessary. if value.shape.ndims == self._sum.shape.ndims: value = value[None, ...] return tf.group(self._sum.assign_add(tf.reduce_sum(value, 0)), self._count.assign_add(tf.shape(value)[0])) def clear(self): """Return the mean estimate and reset the streaming statistics.""" value = self._sum / tf.cast(self._count, self._dtype) with tf.control_dependencies([value]): reset_value = self._sum.assign(tf.zeros_like(self._sum)) reset_count = self._count.assign(0) with tf.control_dependencies([reset_value, reset_count]): return tf.identity(value)