# AI 2018 # Importing the libraries import os import numpy as np import gym from gym import wrappers import pybullet_envs # Setting the Hyper Parameters class Hp(): def __init__(self): self.nb_steps = 1000 self.episode_length = 1000 self.learning_rate = 0.02 self.nb_directions = 16 self.nb_best_directions = 16 assert self.nb_best_directions <= self.nb_directions self.noise = 0.03 self.seed = 1 self.env_name = 'HalfCheetahBulletEnv-v0' # Normalizing the states class Normalizer(): def __init__(self, nb_inputs): self.n = np.zeros(nb_inputs) self.mean = np.zeros(nb_inputs) self.mean_diff = np.zeros(nb_inputs) self.var = np.zeros(nb_inputs) def observe(self, x): self.n += 1. last_mean = self.mean.copy() self.mean += (x - self.mean) / self.n self.mean_diff += (x - last_mean) * (x - self.mean) self.var = (self.mean_diff / self.n).clip(min = 1e-2) def normalize(self, inputs): obs_mean = self.mean obs_std = np.sqrt(self.var) return (inputs - obs_mean) / obs_std # Building the AI class Policy(): def __init__(self, input_size, output_size): self.theta = np.zeros((output_size, input_size)) print("self.theta=",self.theta) def evaluate(self, input, delta = None, direction = None): if direction is None: return np.clip(self.theta.dot(input), -1.0, 1.0) elif direction == "positive": return np.clip((self.theta + hp.noise*delta).dot(input), -1.0, 1.0) else: return np.clip((self.theta - hp.noise*delta).dot(input), -1.0, 1.0) def sample_deltas(self): return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)] def update(self, rollouts, sigma_r): step = np.zeros(self.theta.shape) for r_pos, r_neg, d in rollouts: step += (r_pos - r_neg) * d self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step # Exploring the policy on one specific direction and over one episode def explore(env, normalizer, policy, direction = None, delta = None): state = env.reset() done = False num_plays = 0. sum_rewards = 0 while not done and num_plays < hp.episode_length: normalizer.observe(state) state = normalizer.normalize(state) action = policy.evaluate(state, delta, direction) state, reward, done, _ = env.step(action) reward = max(min(reward, 1), -1) sum_rewards += reward num_plays += 1 return sum_rewards # Training the AI def train(env, policy, normalizer, hp): for step in range(hp.nb_steps): # Initializing the perturbations deltas and the positive/negative rewards deltas = policy.sample_deltas() positive_rewards = [0] * hp.nb_directions negative_rewards = [0] * hp.nb_directions # Getting the positive rewards in the positive directions for k in range(hp.nb_directions): positive_rewards[k] = explore(env, normalizer, policy, direction = "positive", delta = deltas[k]) # Getting the negative rewards in the negative/opposite directions for k in range(hp.nb_directions): negative_rewards[k] = explore(env, normalizer, policy, direction = "negative", delta = deltas[k]) # Gathering all the positive/negative rewards to compute the standard deviation of these rewards all_rewards = np.array(positive_rewards + negative_rewards) sigma_r = all_rewards.std() # Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions scores = {k:max(r_pos, r_neg) for k,(r_pos,r_neg) in enumerate(zip(positive_rewards, negative_rewards))} order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions] rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order] # Updating our policy policy.update(rollouts, sigma_r) # Printing the final reward of the policy after the update reward_evaluation = explore(env, normalizer, policy) print('Step:', step, 'Reward:', reward_evaluation) # Running the main code def mkdir(base, name): path = os.path.join(base, name) if not os.path.exists(path): os.makedirs(path) return path work_dir = mkdir('exp', 'brs') monitor_dir = mkdir(work_dir, 'monitor') hp = Hp() np.random.seed(hp.seed) env = gym.make(hp.env_name) # env.render(mode = "human") #env = wrappers.Monitor(env, monitor_dir, force = True) nb_inputs = env.observation_space.shape[0] nb_outputs = env.action_space.shape[0] policy = Policy(nb_inputs, nb_outputs) normalizer = Normalizer(nb_inputs) train(env, policy, normalizer, hp)