Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files. make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type. This commit contains no other changes aside from adding and applying clang-format-all.sh
273 lines
8.4 KiB
C
273 lines
8.4 KiB
C
/*
|
|
** $Id: lopcodes.h,v 1.142.1.1 2013/04/12 18:48:47 roberto Exp $
|
|
** Opcodes for Lua virtual machine
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#ifndef lopcodes_h
|
|
#define lopcodes_h
|
|
|
|
#include "llimits.h"
|
|
|
|
/*===========================================================================
|
|
We assume that instructions are unsigned numbers.
|
|
All instructions have an opcode in the first 6 bits.
|
|
Instructions can have the following fields:
|
|
`A' : 8 bits
|
|
`B' : 9 bits
|
|
`C' : 9 bits
|
|
'Ax' : 26 bits ('A', 'B', and 'C' together)
|
|
`Bx' : 18 bits (`B' and `C' together)
|
|
`sBx' : signed Bx
|
|
|
|
A signed argument is represented in excess K; that is, the number
|
|
value is the unsigned value minus K. K is exactly the maximum value
|
|
for that argument (so that -max is represented by 0, and +max is
|
|
represented by 2*max), which is half the maximum for the corresponding
|
|
unsigned argument.
|
|
===========================================================================*/
|
|
|
|
enum OpMode
|
|
{
|
|
iABC,
|
|
iABx,
|
|
iAsBx,
|
|
iAx
|
|
}; /* basic instruction format */
|
|
|
|
/*
|
|
** size and position of opcode arguments.
|
|
*/
|
|
#define SIZE_C 9
|
|
#define SIZE_B 9
|
|
#define SIZE_Bx (SIZE_C + SIZE_B)
|
|
#define SIZE_A 8
|
|
#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
|
|
|
|
#define SIZE_OP 6
|
|
|
|
#define POS_OP 0
|
|
#define POS_A (POS_OP + SIZE_OP)
|
|
#define POS_C (POS_A + SIZE_A)
|
|
#define POS_B (POS_C + SIZE_C)
|
|
#define POS_Bx POS_C
|
|
#define POS_Ax POS_A
|
|
|
|
/*
|
|
** limits for opcode arguments.
|
|
** we use (signed) int to manipulate most arguments,
|
|
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
|
|
*/
|
|
#if SIZE_Bx < LUAI_BITSINT - 1
|
|
#define MAXARG_Bx ((1 << SIZE_Bx) - 1)
|
|
#define MAXARG_sBx (MAXARG_Bx >> 1) /* `sBx' is signed */
|
|
#else
|
|
#define MAXARG_Bx MAX_INT
|
|
#define MAXARG_sBx MAX_INT
|
|
#endif
|
|
|
|
#if SIZE_Ax < LUAI_BITSINT - 1
|
|
#define MAXARG_Ax ((1 << SIZE_Ax) - 1)
|
|
#else
|
|
#define MAXARG_Ax MAX_INT
|
|
#endif
|
|
|
|
#define MAXARG_A ((1 << SIZE_A) - 1)
|
|
#define MAXARG_B ((1 << SIZE_B) - 1)
|
|
#define MAXARG_C ((1 << SIZE_C) - 1)
|
|
|
|
/* creates a mask with `n' 1 bits at position `p' */
|
|
#define MASK1(n, p) ((~((~(Instruction)0) << (n))) << (p))
|
|
|
|
/* creates a mask with `n' 0 bits at position `p' */
|
|
#define MASK0(n, p) (~MASK1(n, p))
|
|
|
|
/*
|
|
** the following macros help to manipulate instructions
|
|
*/
|
|
|
|
#define GET_OPCODE(i) (cast(OpCode, ((i) >> POS_OP) & MASK1(SIZE_OP, 0)))
|
|
#define SET_OPCODE(i, o) ((i) = (((i)&MASK0(SIZE_OP, POS_OP)) | \
|
|
((cast(Instruction, o) << POS_OP) & MASK1(SIZE_OP, POS_OP))))
|
|
|
|
#define getarg(i, pos, size) (cast(int, ((i) >> pos) & MASK1(size, 0)))
|
|
#define setarg(i, v, pos, size) ((i) = (((i)&MASK0(size, pos)) | \
|
|
((cast(Instruction, v) << pos) & MASK1(size, pos))))
|
|
|
|
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
|
|
#define SETARG_A(i, v) setarg(i, v, POS_A, SIZE_A)
|
|
|
|
#define GETARG_B(i) getarg(i, POS_B, SIZE_B)
|
|
#define SETARG_B(i, v) setarg(i, v, POS_B, SIZE_B)
|
|
|
|
#define GETARG_C(i) getarg(i, POS_C, SIZE_C)
|
|
#define SETARG_C(i, v) setarg(i, v, POS_C, SIZE_C)
|
|
|
|
#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
|
|
#define SETARG_Bx(i, v) setarg(i, v, POS_Bx, SIZE_Bx)
|
|
|
|
#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
|
|
#define SETARG_Ax(i, v) setarg(i, v, POS_Ax, SIZE_Ax)
|
|
|
|
#define GETARG_sBx(i) (GETARG_Bx(i) - MAXARG_sBx)
|
|
#define SETARG_sBx(i, b) SETARG_Bx((i), cast(unsigned int, (b) + MAXARG_sBx))
|
|
|
|
#define CREATE_ABC(o, a, b, c) ((cast(Instruction, o) << POS_OP) | (cast(Instruction, a) << POS_A) | (cast(Instruction, b) << POS_B) | (cast(Instruction, c) << POS_C))
|
|
|
|
#define CREATE_ABx(o, a, bc) ((cast(Instruction, o) << POS_OP) | (cast(Instruction, a) << POS_A) | (cast(Instruction, bc) << POS_Bx))
|
|
|
|
#define CREATE_Ax(o, a) ((cast(Instruction, o) << POS_OP) | (cast(Instruction, a) << POS_Ax))
|
|
|
|
/*
|
|
** Macros to operate RK indices
|
|
*/
|
|
|
|
/* this bit 1 means constant (0 means register) */
|
|
#define BITRK (1 << (SIZE_B - 1))
|
|
|
|
/* test whether value is a constant */
|
|
#define ISK(x) ((x)&BITRK)
|
|
|
|
/* gets the index of the constant */
|
|
#define INDEXK(r) ((int)(r) & ~BITRK)
|
|
|
|
#define MAXINDEXRK (BITRK - 1)
|
|
|
|
/* code a constant index as a RK value */
|
|
#define RKASK(x) ((x) | BITRK)
|
|
|
|
/*
|
|
** invalid register that fits in 8 bits
|
|
*/
|
|
#define NO_REG MAXARG_A
|
|
|
|
/*
|
|
** R(x) - register
|
|
** Kst(x) - constant (in constant table)
|
|
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
|
|
*/
|
|
|
|
/*
|
|
** grep "ORDER OP" if you change these enums
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
/*----------------------------------------------------------------------
|
|
name args description
|
|
------------------------------------------------------------------------*/
|
|
OP_MOVE, /* A B R(A) := R(B) */
|
|
OP_LOADK, /* A Bx R(A) := Kst(Bx) */
|
|
OP_LOADKX, /* A R(A) := Kst(extra arg) */
|
|
OP_LOADBOOL, /* A B C R(A) := (Bool)B; if (C) pc++ */
|
|
OP_LOADNIL, /* A B R(A), R(A+1), ..., R(A+B) := nil */
|
|
OP_GETUPVAL, /* A B R(A) := UpValue[B] */
|
|
|
|
OP_GETTABUP, /* A B C R(A) := UpValue[B][RK(C)] */
|
|
OP_GETTABLE, /* A B C R(A) := R(B)[RK(C)] */
|
|
|
|
OP_SETTABUP, /* A B C UpValue[A][RK(B)] := RK(C) */
|
|
OP_SETUPVAL, /* A B UpValue[B] := R(A) */
|
|
OP_SETTABLE, /* A B C R(A)[RK(B)] := RK(C) */
|
|
|
|
OP_NEWTABLE, /* A B C R(A) := {} (size = B,C) */
|
|
|
|
OP_SELF, /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
|
|
|
|
OP_ADD, /* A B C R(A) := RK(B) + RK(C) */
|
|
OP_SUB, /* A B C R(A) := RK(B) - RK(C) */
|
|
OP_MUL, /* A B C R(A) := RK(B) * RK(C) */
|
|
OP_DIV, /* A B C R(A) := RK(B) / RK(C) */
|
|
OP_MOD, /* A B C R(A) := RK(B) % RK(C) */
|
|
OP_POW, /* A B C R(A) := RK(B) ^ RK(C) */
|
|
OP_UNM, /* A B R(A) := -R(B) */
|
|
OP_NOT, /* A B R(A) := not R(B) */
|
|
OP_LEN, /* A B R(A) := length of R(B) */
|
|
|
|
OP_CONCAT, /* A B C R(A) := R(B).. ... ..R(C) */
|
|
|
|
OP_JMP, /* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */
|
|
OP_EQ, /* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
|
|
OP_LT, /* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
|
|
OP_LE, /* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
|
|
|
|
OP_TEST, /* A C if not (R(A) <=> C) then pc++ */
|
|
OP_TESTSET, /* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
|
|
|
|
OP_CALL, /* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
OP_TAILCALL, /* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
OP_RETURN, /* A B return R(A), ... ,R(A+B-2) (see note) */
|
|
|
|
OP_FORLOOP, /* A sBx R(A)+=R(A+2);
|
|
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
|
|
OP_FORPREP, /* A sBx R(A)-=R(A+2); pc+=sBx */
|
|
|
|
OP_TFORCALL, /* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
|
|
OP_TFORLOOP, /* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
|
|
|
|
OP_SETLIST, /* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
|
|
|
|
OP_CLOSURE, /* A Bx R(A) := closure(KPROTO[Bx]) */
|
|
|
|
OP_VARARG, /* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
|
|
|
|
OP_EXTRAARG /* Ax extra (larger) argument for previous opcode */
|
|
} OpCode;
|
|
|
|
#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
|
|
|
|
/*===========================================================================
|
|
Notes:
|
|
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
|
|
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
|
|
OP_SETLIST) may use `top'.
|
|
|
|
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and
|
|
set top (like in OP_CALL with C == 0).
|
|
|
|
(*) In OP_RETURN, if (B == 0) then return up to `top'.
|
|
|
|
(*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
|
|
'instruction' is EXTRAARG(real C).
|
|
|
|
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
|
|
|
|
(*) For comparisons, A specifies what condition the test should accept
|
|
(true or false).
|
|
|
|
(*) All `skips' (pc++) assume that next instruction is a jump.
|
|
|
|
===========================================================================*/
|
|
|
|
/*
|
|
** masks for instruction properties. The format is:
|
|
** bits 0-1: op mode
|
|
** bits 2-3: C arg mode
|
|
** bits 4-5: B arg mode
|
|
** bit 6: instruction set register A
|
|
** bit 7: operator is a test (next instruction must be a jump)
|
|
*/
|
|
|
|
enum OpArgMask
|
|
{
|
|
OpArgN, /* argument is not used */
|
|
OpArgU, /* argument is used */
|
|
OpArgR, /* argument is a register or a jump offset */
|
|
OpArgK /* argument is a constant or register/constant */
|
|
};
|
|
|
|
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
|
|
|
|
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
|
|
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
|
|
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
|
|
#define testAMode(m) (luaP_opmodes[m] & (1 << 6))
|
|
#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
|
|
|
|
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES + 1]; /* opcode names */
|
|
|
|
/* number of list items to accumulate before a SETLIST instruction */
|
|
#define LFIELDS_PER_FLUSH 50
|
|
|
|
#endif
|