Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
173 lines
5.2 KiB
C++
173 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_HOUSEHOLDER_H
|
|
#define EIGEN_HOUSEHOLDER_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
template<int n> struct decrement_size
|
|
{
|
|
enum {
|
|
ret = n==Dynamic ? n : n-1
|
|
};
|
|
};
|
|
}
|
|
|
|
/** Computes the elementary reflector H such that:
|
|
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
|
* where the transformation H is:
|
|
* \f$ H = I - tau v v^*\f$
|
|
* and the vector v is:
|
|
* \f$ v^T = [1 essential^T] \f$
|
|
*
|
|
* The essential part of the vector \c v is stored in *this.
|
|
*
|
|
* On output:
|
|
* \param tau the scaling factor of the Householder transformation
|
|
* \param beta the result of H * \c *this
|
|
*
|
|
* \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(),
|
|
* MatrixBase::applyHouseholderOnTheRight()
|
|
*/
|
|
template<typename Derived>
|
|
void MatrixBase<Derived>::makeHouseholderInPlace(Scalar& tau, RealScalar& beta)
|
|
{
|
|
VectorBlock<Derived, internal::decrement_size<Base::SizeAtCompileTime>::ret> essentialPart(derived(), 1, size()-1);
|
|
makeHouseholder(essentialPart, tau, beta);
|
|
}
|
|
|
|
/** Computes the elementary reflector H such that:
|
|
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
|
* where the transformation H is:
|
|
* \f$ H = I - tau v v^*\f$
|
|
* and the vector v is:
|
|
* \f$ v^T = [1 essential^T] \f$
|
|
*
|
|
* On output:
|
|
* \param essential the essential part of the vector \c v
|
|
* \param tau the scaling factor of the Householder transformation
|
|
* \param beta the result of H * \c *this
|
|
*
|
|
* \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(),
|
|
* MatrixBase::applyHouseholderOnTheRight()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename EssentialPart>
|
|
void MatrixBase<Derived>::makeHouseholder(
|
|
EssentialPart& essential,
|
|
Scalar& tau,
|
|
RealScalar& beta) const
|
|
{
|
|
using std::sqrt;
|
|
using numext::conj;
|
|
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
|
|
VectorBlock<const Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size()-1);
|
|
|
|
RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
|
|
Scalar c0 = coeff(0);
|
|
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
|
|
|
if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol)
|
|
{
|
|
tau = RealScalar(0);
|
|
beta = numext::real(c0);
|
|
essential.setZero();
|
|
}
|
|
else
|
|
{
|
|
beta = sqrt(numext::abs2(c0) + tailSqNorm);
|
|
if (numext::real(c0)>=RealScalar(0))
|
|
beta = -beta;
|
|
essential = tail / (c0 - beta);
|
|
tau = conj((beta - c0) / beta);
|
|
}
|
|
}
|
|
|
|
/** Apply the elementary reflector H given by
|
|
* \f$ H = I - tau v v^*\f$
|
|
* with
|
|
* \f$ v^T = [1 essential^T] \f$
|
|
* from the left to a vector or matrix.
|
|
*
|
|
* On input:
|
|
* \param essential the essential part of the vector \c v
|
|
* \param tau the scaling factor of the Householder transformation
|
|
* \param workspace a pointer to working space with at least
|
|
* this->cols() * essential.size() entries
|
|
*
|
|
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
|
* MatrixBase::applyHouseholderOnTheRight()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename EssentialPart>
|
|
void MatrixBase<Derived>::applyHouseholderOnTheLeft(
|
|
const EssentialPart& essential,
|
|
const Scalar& tau,
|
|
Scalar* workspace)
|
|
{
|
|
if(rows() == 1)
|
|
{
|
|
*this *= Scalar(1)-tau;
|
|
}
|
|
else if(tau!=Scalar(0))
|
|
{
|
|
Map<typename internal::plain_row_type<PlainObject>::type> tmp(workspace,cols());
|
|
Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows()-1, cols());
|
|
tmp.noalias() = essential.adjoint() * bottom;
|
|
tmp += this->row(0);
|
|
this->row(0) -= tau * tmp;
|
|
bottom.noalias() -= tau * essential * tmp;
|
|
}
|
|
}
|
|
|
|
/** Apply the elementary reflector H given by
|
|
* \f$ H = I - tau v v^*\f$
|
|
* with
|
|
* \f$ v^T = [1 essential^T] \f$
|
|
* from the right to a vector or matrix.
|
|
*
|
|
* On input:
|
|
* \param essential the essential part of the vector \c v
|
|
* \param tau the scaling factor of the Householder transformation
|
|
* \param workspace a pointer to working space with at least
|
|
* this->cols() * essential.size() entries
|
|
*
|
|
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
|
* MatrixBase::applyHouseholderOnTheLeft()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename EssentialPart>
|
|
void MatrixBase<Derived>::applyHouseholderOnTheRight(
|
|
const EssentialPart& essential,
|
|
const Scalar& tau,
|
|
Scalar* workspace)
|
|
{
|
|
if(cols() == 1)
|
|
{
|
|
*this *= Scalar(1)-tau;
|
|
}
|
|
else if(tau!=Scalar(0))
|
|
{
|
|
Map<typename internal::plain_col_type<PlainObject>::type> tmp(workspace,rows());
|
|
Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(), cols()-1);
|
|
tmp.noalias() = right * essential.conjugate();
|
|
tmp += this->col(0);
|
|
this->col(0) -= tau * tmp;
|
|
right.noalias() -= tau * tmp * essential.transpose();
|
|
}
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_HOUSEHOLDER_H
|