Files
bullet3/Extras/quickstep/OdeConstraintSolver.cpp
ejcoumans 17a214a2b3 - Added btRigidBodyConstructionInfo, to make it easier to set individual setting (and leave other untouched) during rigid body construction.
This was harder using default arguments. Thanks Vangelis Kokkevis for pointing this out.
- Fixed memoryleak in the ConstraintDemo and Raytracer demo.
- fixed issue with clearing forces/gravity at the end of the stepSimulation, instead of during internalSingleStepSimulation.
Thanks chunky for pointing this out: http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1780
- Disabled additional damping in rigid body by default, but enable it in most demos. Set btRigidBodyConstructionInfo m_additionalDamping to true to enable this.
- Removed obsolete QUICKPROF BEGIN/END_PROFILE, and enabled BT_PROFILE. Profiling is enabled by default (see Bullet/Demos/OpenGL/DemoApplication.cpp how to use this).
User can switch off profiling by enabling define BT_NO_PROFILE in Bullet/src/btQuickprof.h.
2007-12-17 04:26:36 +00:00

406 lines
12 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "OdeConstraintSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletDynamics/ConstraintSolver/btContactConstraint.h"
#include "BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "OdeJoint.h"
#include "OdeContactJoint.h"
#include "OdeTypedJoint.h"
#include "OdeSolverBody.h"
#include <new.h>
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#define USE_SOR_SOLVER
#include "SorLcp.h"
#include <math.h>
#include <float.h>//FLT_MAX
#ifdef WIN32
#include <memory.h>
#endif
#include <string.h>
#include <stdio.h>
#if defined (WIN32)
#include <malloc.h>
#else
#if defined (__FreeBSD__)
#include <stdlib.h>
#else
#include <alloca.h>
#endif
#endif
class BU_Joint;
//see below
//to bridge with ODE quickstep, we make a temp copy of the rigidbodies in each simultion island
OdeConstraintSolver::OdeConstraintSolver():
m_cfm(0.f),//1e-5f),
m_erp(0.4f)
{
}
//iterative lcp and penalty method
btScalar OdeConstraintSolver::solveGroup(btCollisionObject** bodies,int numBulletBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* dispatcher)
{
m_CurBody = 0;
m_CurJoint = 0;
m_CurTypedJoint = 0;
int max_contacts = 0; /// should be 4 //Remotion
for (int j=0;j<numManifolds;j++){
btPersistentManifold* manifold = manifoldPtr[j];
if (manifold->getNumContacts() > max_contacts) max_contacts = manifold->getNumContacts();
}
//if(max_contacts > 4)
// printf(" max_contacts > 4");
int numBodies = 0;
m_odeBodies.clear();
m_odeBodies.reserve(numBulletBodies + 1); //???
// OdeSolverBody* odeBodies [ODE_MAX_SOLVER_BODIES];
int numJoints = 0;
m_joints.clear();
m_joints.reserve(numManifolds * max_contacts + 4 + numConstraints + 1); //???
// BU_Joint* joints [ODE_MAX_SOLVER_JOINTS*2];
m_SolverBodyArray.resize(numBulletBodies + 1);
m_JointArray.resize(numManifolds * max_contacts + 4);
m_TypedJointArray.resize(numConstraints + 1);
//capture contacts
int j;
int body0=-1,body1=-1;
for (j=0;j<numManifolds;j++)
{
btPersistentManifold* manifold = manifoldPtr[j];
if (manifold->getNumContacts() > 0)
{
body0 = ConvertBody((btRigidBody*)manifold->getBody0(),m_odeBodies,numBodies);
body1 = ConvertBody((btRigidBody*)manifold->getBody1(),m_odeBodies,numBodies);
ConvertConstraint(manifold,m_joints,numJoints,m_odeBodies,body0,body1,debugDrawer);
}
}
//capture constraints
for (j=0;j<numConstraints;j++)
{
btTypedConstraint * typedconstraint = constraints[j];
body0 = ConvertBody((btRigidBody*)&typedconstraint->getRigidBodyA(),m_odeBodies,numBodies);
body1 = ConvertBody((btRigidBody*)&typedconstraint->getRigidBodyB(),m_odeBodies,numBodies);
ConvertTypedConstraint(typedconstraint,m_joints,numJoints,m_odeBodies,body0,body1,debugDrawer);
}
//if(numBodies > numBulletBodies)
// printf(" numBodies > numBulletBodies");
//if(numJoints > numManifolds * 4 + numConstraints)
// printf(" numJoints > numManifolds * 4 + numConstraints");
m_SorLcpSolver.SolveInternal1(m_cfm,m_erp,m_odeBodies,numBodies,m_joints,numJoints,infoGlobal,stackAlloc); ///do
//write back resulting velocities
for (int i=0;i<numBodies;i++)
{
if (m_odeBodies[i]->m_invMass)
{
m_odeBodies[i]->m_originalBody->setLinearVelocity(m_odeBodies[i]->m_linearVelocity);
m_odeBodies[i]->m_originalBody->setAngularVelocity(m_odeBodies[i]->m_angularVelocity);
}
}
/// Remotion, just free all this here
m_odeBodies.clear();
m_joints.clear();
m_SolverBodyArray.clear();
m_JointArray.clear();
m_TypedJointArray.clear();
return 0.f;
}
/////////////////////////////////////////////////////////////////////////////////
typedef btScalar dQuaternion[4];
#define _R(i,j) R[(i)*4+(j)]
void dRfromQ1 (dMatrix3 R, const dQuaternion q)
{
// q = (s,vx,vy,vz)
btScalar qq1 = 2.f*q[1]*q[1];
btScalar qq2 = 2.f*q[2]*q[2];
btScalar qq3 = 2.f*q[3]*q[3];
_R(0,0) = 1.f - qq2 - qq3;
_R(0,1) = 2*(q[1]*q[2] - q[0]*q[3]);
_R(0,2) = 2*(q[1]*q[3] + q[0]*q[2]);
_R(0,3) = 0.f;
_R(1,0) = 2*(q[1]*q[2] + q[0]*q[3]);
_R(1,1) = 1.f - qq1 - qq3;
_R(1,2) = 2*(q[2]*q[3] - q[0]*q[1]);
_R(1,3) = 0.f;
_R(2,0) = 2*(q[1]*q[3] - q[0]*q[2]);
_R(2,1) = 2*(q[2]*q[3] + q[0]*q[1]);
_R(2,2) = 1.f - qq1 - qq2;
_R(2,3) = 0.f;
}
//int OdeConstraintSolver::ConvertBody(btRigidBody* orgBody,OdeSolverBody** bodies,int& numBodies)
int OdeConstraintSolver::ConvertBody(btRigidBody* orgBody,btAlignedObjectArray< OdeSolverBody*> &bodies,int& numBodies)
{
assert(orgBody);
if (!orgBody || (orgBody->getInvMass() == 0.f) )
{
return -1;
}
if (orgBody->getCompanionId()>=0)
{
return orgBody->getCompanionId();
}
//first try to find
int i,j;
//if not found, create a new body
// OdeSolverBody* body = bodies[numBodies] = &gSolverBodyArray[numBodies];
OdeSolverBody* body = &m_SolverBodyArray[numBodies];
bodies.push_back(body); // Remotion 10.10.07:
orgBody->setCompanionId(numBodies);
numBodies++;
body->m_originalBody = orgBody;
body->m_facc.setValue(0,0,0,0);
body->m_tacc.setValue(0,0,0,0);
body->m_linearVelocity = orgBody->getLinearVelocity();
body->m_angularVelocity = orgBody->getAngularVelocity();
body->m_invMass = orgBody->getInvMass();
body->m_centerOfMassPosition = orgBody->getCenterOfMassPosition();
body->m_friction = orgBody->getFriction();
//are the indices the same ?
for (i=0;i<4;i++)
{
for ( j=0;j<3;j++)
{
body->m_invI[i+4*j] = 0.f;
body->m_I[i+4*j] = 0.f;
}
}
body->m_invI[0+4*0] = orgBody->getInvInertiaDiagLocal().x();
body->m_invI[1+4*1] = orgBody->getInvInertiaDiagLocal().y();
body->m_invI[2+4*2] = orgBody->getInvInertiaDiagLocal().z();
body->m_I[0+0*4] = 1.f/orgBody->getInvInertiaDiagLocal().x();
body->m_I[1+1*4] = 1.f/orgBody->getInvInertiaDiagLocal().y();
body->m_I[2+2*4] = 1.f/orgBody->getInvInertiaDiagLocal().z();
dQuaternion q;
q[1] = orgBody->getOrientation().x();
q[2] = orgBody->getOrientation().y();
q[3] = orgBody->getOrientation().z();
q[0] = orgBody->getOrientation().w();
dRfromQ1(body->m_R,q);
return numBodies-1;
}
void OdeConstraintSolver::ConvertConstraint(btPersistentManifold* manifold,
btAlignedObjectArray<BU_Joint*> &joints,int& numJoints,
const btAlignedObjectArray< OdeSolverBody*> &bodies,
int _bodyId0,int _bodyId1,btIDebugDraw* debugDrawer)
{
manifold->refreshContactPoints(((btRigidBody*)manifold->getBody0())->getCenterOfMassTransform(),
((btRigidBody*)manifold->getBody1())->getCenterOfMassTransform());
int bodyId0 = _bodyId0,bodyId1 = _bodyId1;
int i,numContacts = manifold->getNumContacts();
bool swapBodies = (bodyId0 < 0);
OdeSolverBody* body0,*body1;
if (swapBodies)
{
bodyId0 = _bodyId1;
bodyId1 = _bodyId0;
body0 = bodyId0>=0 ? bodies[bodyId0] : 0;//(btRigidBody*)manifold->getBody1();
body1 = bodyId1>=0 ? bodies[bodyId1] : 0;//(btRigidBody*)manifold->getBody0();
}
else
{
body0 = bodyId0>=0 ? bodies[bodyId0] : 0;//(btRigidBody*)manifold->getBody0();
body1 = bodyId1>=0 ? bodies[bodyId1] : 0;//(btRigidBody*)manifold->getBody1();
}
assert(bodyId0 >= 0);
btVector3 color(0,1,0);
for (i=0;i<numContacts;i++)
{
if (debugDrawer)
{
const btManifoldPoint& cp = manifold->getContactPoint(i);
debugDrawer->drawContactPoint(
cp.m_positionWorldOnB,
cp.m_normalWorldOnB,
cp.getDistance(),
cp.getLifeTime(),
color);
}
//assert (m_CurJoint < ODE_MAX_SOLVER_JOINTS);
// if (manifold->getContactPoint(i).getDistance() < 0.0f)
{
ContactJoint* cont = new (&m_JointArray[m_CurJoint++]) ContactJoint( manifold ,i, swapBodies,body0,body1);
//ContactJoint* cont = new (&gJointArray[m_CurJoint++]) ContactJoint( manifold ,i, swapBodies,body0,body1);
cont->node[0].joint = cont;
cont->node[0].body = bodyId0 >= 0 ? bodies[bodyId0] : 0;
cont->node[1].joint = cont;
cont->node[1].body = bodyId1 >= 0 ? bodies[bodyId1] : 0;
// joints[numJoints++] = cont;
joints.push_back(cont); // Remotion 10.10.07:
numJoints++;
for (int i=0;i<6;i++)
cont->lambda[i] = 0.f;
cont->flags = 0;
}
}
//create a new contact constraint
}
void OdeConstraintSolver::ConvertTypedConstraint(
btTypedConstraint * constraint,
btAlignedObjectArray<BU_Joint*> &joints,int& numJoints,
const btAlignedObjectArray< OdeSolverBody*> &bodies,int _bodyId0,int _bodyId1,btIDebugDraw* debugDrawer)
{
int bodyId0 = _bodyId0,bodyId1 = _bodyId1;
bool swapBodies = (bodyId0 < 0);
OdeSolverBody* body0,*body1;
if (swapBodies)
{
bodyId0 = _bodyId1;
bodyId1 = _bodyId0;
body0 = bodyId0>=0 ? bodies[bodyId0] : 0;//(btRigidBody*)manifold->getBody1();
body1 = bodyId1>=0 ? bodies[bodyId1] : 0;//(btRigidBody*)manifold->getBody0();
}
else
{
body0 = bodyId0>=0 ? bodies[bodyId0] : 0;//(btRigidBody*)manifold->getBody0();
body1 = bodyId1>=0 ? bodies[bodyId1] : 0;//(btRigidBody*)manifold->getBody1();
}
assert(bodyId0 >= 0);
//assert (m_CurTypedJoint < ODE_MAX_SOLVER_JOINTS);
OdeTypedJoint * cont = NULL;
// Determine constraint type
int joint_type = constraint->getConstraintType();
switch(joint_type)
{
case POINT2POINT_CONSTRAINT_TYPE:
case D6_CONSTRAINT_TYPE:
cont = new (&m_TypedJointArray[m_CurTypedJoint ++]) OdeTypedJoint(constraint,0, swapBodies,body0,body1);
//cont = new (&gTypedJointArray[m_CurTypedJoint ++]) OdeTypedJoint(constraint,0, swapBodies,body0,body1);
break;
};
if(cont)
{
cont->node[0].joint = cont;
cont->node[0].body = bodyId0 >= 0 ? bodies[bodyId0] : 0;
cont->node[1].joint = cont;
cont->node[1].body = bodyId1 >= 0 ? bodies[bodyId1] : 0;
// joints[numJoints++] = cont;
joints.push_back(cont); // Remotion 10.10.07:
numJoints++;
for (int i=0;i<6;i++)
cont->lambda[i] = 0.f;
cont->flags = 0;
}
}