Files
bullet3/src/BulletCollision/CollisionDispatch/btCollisionWorld.cpp
ejcoumans 17a214a2b3 - Added btRigidBodyConstructionInfo, to make it easier to set individual setting (and leave other untouched) during rigid body construction.
This was harder using default arguments. Thanks Vangelis Kokkevis for pointing this out.
- Fixed memoryleak in the ConstraintDemo and Raytracer demo.
- fixed issue with clearing forces/gravity at the end of the stepSimulation, instead of during internalSingleStepSimulation.
Thanks chunky for pointing this out: http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1780
- Disabled additional damping in rigid body by default, but enable it in most demos. Set btRigidBodyConstructionInfo m_additionalDamping to true to enable this.
- Removed obsolete QUICKPROF BEGIN/END_PROFILE, and enabled BT_PROFILE. Profiling is enabled by default (see Bullet/Demos/OpenGL/DemoApplication.cpp how to use this).
User can switch off profiling by enabling define BT_NO_PROFILE in Bullet/src/btQuickprof.h.
2007-12-17 04:26:36 +00:00

661 lines
23 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCollisionWorld.h"
#include "btCollisionDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btStackAlloc.h"
//When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
:m_dispatcher1(dispatcher),
m_broadphasePairCache(pairCache),
m_debugDrawer(0)
{
m_stackAlloc = collisionConfiguration->getStackAllocator();
m_dispatchInfo.m_stackAllocator = m_stackAlloc;
}
btCollisionWorld::~btCollisionWorld()
{
//clean up remaining objects
int i;
for (i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* collisionObject= m_collisionObjects[i];
btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
if (bp)
{
//
// only clear the cached algorithms
//
getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
getBroadphase()->destroyProxy(bp,m_dispatcher1);
}
}
}
void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask)
{
//check that the object isn't already added
btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size());
m_collisionObjects.push_back(collisionObject);
//calculate new AABB
btTransform trans = collisionObject->getWorldTransform();
btVector3 minAabb;
btVector3 maxAabb;
collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb);
int type = collisionObject->getCollisionShape()->getShapeType();
collisionObject->setBroadphaseHandle( getBroadphase()->createProxy(
minAabb,
maxAabb,
type,
collisionObject,
collisionFilterGroup,
collisionFilterMask,
m_dispatcher1
)) ;
}
void btCollisionWorld::updateAabbs()
{
BT_PROFILE("updateAabbs");
btTransform predictedTrans;
for ( int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
//only update aabb of active objects
if (colObj->isActive())
{
btPoint3 minAabb,maxAabb;
colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;
//moving objects should be moderately sized, probably something wrong if not
if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
{
bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
} else
{
//something went wrong, investigate
//this assert is unwanted in 3D modelers (danger of loosing work)
colObj->setActivationState(DISABLE_SIMULATION);
static bool reportMe = true;
if (reportMe && m_debugDrawer)
{
reportMe = false;
m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
m_debugDrawer->reportErrorWarning("Thanks.\n");
}
}
}
}
}
void btCollisionWorld::performDiscreteCollisionDetection()
{
BT_PROFILE("performDiscreteCollisionDetection");
btDispatcherInfo& dispatchInfo = getDispatchInfo();
updateAabbs();
{
m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
}
btDispatcher* dispatcher = getDispatcher();
{
BT_PROFILE("dispatchAllCollisionPairs");
if (dispatcher)
dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1);
}
}
void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
{
//bool removeFromBroadphase = false;
{
btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
if (bp)
{
//
// only clear the cached algorithms
//
getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
getBroadphase()->destroyProxy(bp,m_dispatcher1);
collisionObject->setBroadphaseHandle(0);
}
}
//swapremove
m_collisionObjects.remove(collisionObject);
}
void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
btCollisionObject* collisionObject,
const btCollisionShape* collisionShape,
const btTransform& colObjWorldTransform,
RayResultCallback& resultCallback,short int collisionFilterMask)
{
btSphereShape pointShape(btScalar(0.0));
pointShape.setMargin(0.f);
const btConvexShape* castShape = &pointShape;
if (collisionShape->isConvex())
{
btConvexCast::CastResult castResult;
castResult.m_fraction = resultCallback.m_closestHitFraction;
btConvexShape* convexShape = (btConvexShape*) collisionShape;
btVoronoiSimplexSolver simplexSolver;
#define USE_SUBSIMPLEX_CONVEX_CAST 1
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver);
#else
//btGjkConvexCast convexCaster(castShape,convexShape,&simplexSolver);
//btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
#endif //#USE_SUBSIMPLEX_CONVEX_CAST
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
{
//add hit
if (castResult.m_normal.length2() > btScalar(0.0001))
{
if (castResult.m_fraction < resultCallback.m_closestHitFraction)
{
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
//rotate normal into worldspace
castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
#endif //USE_SUBSIMPLEX_CONVEX_CAST
castResult.m_normal.normalize();
btCollisionWorld::LocalRayResult localRayResult
(
collisionObject,
0,
castResult.m_normal,
castResult.m_fraction
);
bool normalInWorldSpace = true;
resultCallback.AddSingleResult(localRayResult, normalInWorldSpace);
}
}
}
} else {
if (collisionShape->isConcave())
{
if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
///optimized version for btBvhTriangleMeshShape
btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
btTransform worldTocollisionObject = colObjWorldTransform.inverse();
btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
//ConvexCast::CastResult
struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
{
btCollisionWorld::RayResultCallback* m_resultCallback;
btCollisionObject* m_collisionObject;
btTriangleMeshShape* m_triangleMesh;
BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh):
btTriangleRaycastCallback(from,to),
m_resultCallback(resultCallback),
m_collisionObject(collisionObject),
m_triangleMesh(triangleMesh)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
{
btCollisionWorld::LocalShapeInfo shapeInfo;
shapeInfo.m_shapePart = partId;
shapeInfo.m_triangleIndex = triangleIndex;
btCollisionWorld::LocalRayResult rayResult
(m_collisionObject,
&shapeInfo,
hitNormalLocal,
hitFraction);
bool normalInWorldSpace = false;
return m_resultCallback->AddSingleResult(rayResult,normalInWorldSpace);
}
};
BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
rcb.m_hitFraction = resultCallback.m_closestHitFraction;
triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal);
} else
{
btTriangleMeshShape* triangleMesh = (btTriangleMeshShape*)collisionShape;
btTransform worldTocollisionObject = colObjWorldTransform.inverse();
btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
//ConvexCast::CastResult
struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
{
btCollisionWorld::RayResultCallback* m_resultCallback;
btCollisionObject* m_collisionObject;
btTriangleMeshShape* m_triangleMesh;
BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh):
btTriangleRaycastCallback(from,to),
m_resultCallback(resultCallback),
m_collisionObject(collisionObject),
m_triangleMesh(triangleMesh)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
{
btCollisionWorld::LocalShapeInfo shapeInfo;
shapeInfo.m_shapePart = partId;
shapeInfo.m_triangleIndex = triangleIndex;
btCollisionWorld::LocalRayResult rayResult
(m_collisionObject,
&shapeInfo,
hitNormalLocal,
hitFraction);
bool normalInWorldSpace = false;
return m_resultCallback->AddSingleResult(rayResult,normalInWorldSpace);
}
};
BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
rcb.m_hitFraction = resultCallback.m_closestHitFraction;
btVector3 rayAabbMinLocal = rayFromLocal;
rayAabbMinLocal.setMin(rayToLocal);
btVector3 rayAabbMaxLocal = rayFromLocal;
rayAabbMaxLocal.setMax(rayToLocal);
triangleMesh->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
}
} else {
//todo: use AABB tree or other BVH acceleration structure!
if (collisionShape->isCompound())
{
const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
int i=0;
for (i=0;i<compoundShape->getNumChildShapes();i++)
{
btTransform childTrans = compoundShape->getChildTransform(i);
const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
btTransform childWorldTrans = colObjWorldTransform * childTrans;
rayTestSingle(rayFromTrans,rayToTrans,
collisionObject,
childCollisionShape,
childWorldTrans,
resultCallback, collisionFilterMask);
}
}
}
}
}
void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
btCollisionObject* collisionObject,
const btCollisionShape* collisionShape,
const btTransform& colObjWorldTransform,
ConvexResultCallback& resultCallback,short int collisionFilterMask)
{
if (collisionShape->isConvex())
{
btConvexCast::CastResult castResult;
castResult.m_fraction = btScalar(1.);//??
btConvexShape* convexShape = (btConvexShape*) collisionShape;
btVoronoiSimplexSolver simplexSolver;
btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
{
//add hit
if (castResult.m_normal.length2() > btScalar(0.0001))
{
if (castResult.m_fraction < resultCallback.m_closestHitFraction)
{
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
//rotate normal into worldspace
castResult.m_normal = convexFromTrans.getBasis() * castResult.m_normal;
#endif //USE_SUBSIMPLEX_CONVEX_CAST
castResult.m_normal.normalize();
btCollisionWorld::LocalConvexResult localConvexResult
(
collisionObject,
0,
castResult.m_normal,
castResult.m_hitPoint,
castResult.m_fraction
);
bool normalInWorldSpace = true;
resultCallback.AddSingleResult(localConvexResult, normalInWorldSpace);
}
}
}
} else {
if (collisionShape->isConcave())
{
if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
btTransform worldTocollisionObject = colObjWorldTransform.inverse();
btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
// rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
//ConvexCast::CastResult
struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
{
btCollisionWorld::ConvexResultCallback* m_resultCallback;
btCollisionObject* m_collisionObject;
btTriangleMeshShape* m_triangleMesh;
BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld):
btTriangleConvexcastCallback(castShape, from,to, triangleToWorld),
m_resultCallback(resultCallback),
m_collisionObject(collisionObject),
m_triangleMesh(triangleMesh)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
{
btCollisionWorld::LocalShapeInfo shapeInfo;
shapeInfo.m_shapePart = partId;
shapeInfo.m_triangleIndex = triangleIndex;
if (hitFraction <= m_resultCallback->m_closestHitFraction)
{
btCollisionWorld::LocalConvexResult convexResult
(m_collisionObject,
&shapeInfo,
hitNormalLocal,
hitPointLocal,
hitFraction);
bool normalInWorldSpace = false;
return m_resultCallback->AddSingleResult(convexResult,normalInWorldSpace);
}
return hitFraction;
}
};
BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform);
tccb.m_hitFraction = resultCallback.m_closestHitFraction;
btVector3 boxMinLocal, boxMaxLocal;
castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal);
} else
{
btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
btTransform worldTocollisionObject = colObjWorldTransform.inverse();
btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
// rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
//ConvexCast::CastResult
struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
{
btCollisionWorld::ConvexResultCallback* m_resultCallback;
btCollisionObject* m_collisionObject;
btTriangleMeshShape* m_triangleMesh;
BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld):
btTriangleConvexcastCallback(castShape, from,to, triangleToWorld),
m_resultCallback(resultCallback),
m_collisionObject(collisionObject),
m_triangleMesh(triangleMesh)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
{
btCollisionWorld::LocalShapeInfo shapeInfo;
shapeInfo.m_shapePart = partId;
shapeInfo.m_triangleIndex = triangleIndex;
if (hitFraction <= m_resultCallback->m_closestHitFraction)
{
btCollisionWorld::LocalConvexResult convexResult
(m_collisionObject,
&shapeInfo,
hitNormalLocal,
hitPointLocal,
hitFraction);
bool normalInWorldSpace = false;
return m_resultCallback->AddSingleResult(convexResult,normalInWorldSpace);
}
return hitFraction;
}
};
BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform);
tccb.m_hitFraction = resultCallback.m_closestHitFraction;
btVector3 boxMinLocal, boxMaxLocal;
castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
btVector3 rayAabbMinLocal = convexFromLocal;
rayAabbMinLocal.setMin(convexToLocal);
btVector3 rayAabbMaxLocal = convexFromLocal;
rayAabbMaxLocal.setMax(convexToLocal);
rayAabbMinLocal += boxMinLocal;
rayAabbMaxLocal += boxMaxLocal;
triangleMesh->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal);
}
} else {
//todo: use AABB tree or other BVH acceleration structure!
if (collisionShape->isCompound())
{
const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
int i=0;
for (i=0;i<compoundShape->getNumChildShapes();i++)
{
btTransform childTrans = compoundShape->getChildTransform(i);
const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
btTransform childWorldTrans = colObjWorldTransform * childTrans;
objectQuerySingle(castShape, convexFromTrans,convexToTrans,
collisionObject,
childCollisionShape,
childWorldTrans,
resultCallback, collisionFilterMask);
}
}
}
}
}
void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback,short int collisionFilterMask)
{
btTransform rayFromTrans,rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFromWorld);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayToWorld);
/// go over all objects, and if the ray intersects their aabb, do a ray-shape query using convexCaster (CCD)
int i;
for (i=0;i<m_collisionObjects.size();i++)
{
///terminate further ray tests, once the closestHitFraction reached zero
if (resultCallback.m_closestHitFraction == btScalar(0.f))
break;
btCollisionObject* collisionObject= m_collisionObjects[i];
//only perform raycast if filterMask matches
if(collisionObject->getBroadphaseHandle()->m_collisionFilterGroup & collisionFilterMask) {
//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
btScalar hitLambda = resultCallback.m_closestHitFraction;
btVector3 hitNormal;
if (btRayAabb(rayFromWorld,rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
{
rayTestSingle(rayFromTrans,rayToTrans,
collisionObject,
collisionObject->getCollisionShape(),
collisionObject->getWorldTransform(),
resultCallback);
}
}
}
}
void btCollisionWorld::convexTest(const btConvexShape* castShape, const btVector3& convexFromWorld, const btVector3& convexToWorld, ConvexResultCallback& resultCallback,short int collisionFilterMask)
{
btTransform convexFromTrans,convexToTrans;
convexFromTrans.setIdentity();
convexFromTrans.setOrigin(convexFromWorld);
convexToTrans.setIdentity();
convexToTrans.setOrigin(convexToWorld);
btVector3 castShapeAabbMin, castShapeAabbMax;
btTransform I;
I.setIdentity();
castShape->getAabb (I, castShapeAabbMin, castShapeAabbMax);
/// go over all objects, and if the ray intersects their aabb + cast shape aabb,
// do a ray-shape query using convexCaster (CCD)
int i;
for (i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* collisionObject= m_collisionObjects[i];
//only perform raycast if filterMask matches
if(collisionObject->getBroadphaseHandle()->m_collisionFilterGroup & collisionFilterMask) {
//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
btVector3 hitNormal;
if (btRayAabb(convexFromWorld,convexToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
{
objectQuerySingle(castShape, convexFromTrans,convexToTrans,
collisionObject,
collisionObject->getCollisionShape(),
collisionObject->getWorldTransform(),
resultCallback);
}
}
}
}