Files
bullet3/src/BulletCollision/Gimpact/btGImpactShape.cpp
Lunkhound 1c3686ca51 MultiThreaded Demo:
- fixing various race conditions throughout (usage of static vars, etc)
 - addition of a few lightweight mutexes (which are compiled out by default)
 - slight code rearrangement in discreteDynamicsWorld to facilitate multithreading
 - PoolAllocator::allocate() can now be called when pool is full without
     crashing (null pointer returned)
 - PoolAllocator allocate and freeMemory, are OPTIONALLY threadsafe
     (default is un-threadsafe)
 - CollisionDispatcher no longer checks if the pool allocator is full
     before calling allocate(), instead it just calls allocate() and
     checks if the return is null -- this avoids a race condition
 - SequentialImpulseConstraintSolver OPTIONALLY uses different logic in
     getOrInitSolverBody() to avoid a race condition with kinematic bodies
 - addition of 2 classes which together allow simulation islands to be run
   in parallel:
    - btSimulationIslandManagerMt
    - btDiscreteDynamicsWorldMt
 - MultiThreadedDemo example in the example browser demonstrating use of
   OpenMP, Microsoft PPL, and Intel TBB
 - use multithreading for other demos
 - benchmark demo: add parallel raycasting
2016-10-30 12:47:27 -07:00

292 lines
8.3 KiB
C++

/*
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGImpactShape.h"
#include "btGImpactMassUtil.h"
btGImpactMeshShapePart::btGImpactMeshShapePart( btStridingMeshInterface * meshInterface, int part )
{
// moved from .h to .cpp because of conditional compilation
// (The setting of BT_THREADSAFE may differ between various cpp files, so it is best to
// avoid using it in h files)
m_primitive_manager.m_meshInterface = meshInterface;
m_primitive_manager.m_part = part;
m_box_set.setPrimitiveManager( &m_primitive_manager );
#if BT_THREADSAFE
// If threadsafe is requested, this object uses a different lock/unlock
// model with the btStridingMeshInterface -- lock once when the object is constructed
// and unlock once in the destructor.
// The other way of locking and unlocking for each collision check in the narrowphase
// is not threadsafe. Note these are not thread-locks, they are calls to the meshInterface's
// getLockedReadOnlyVertexIndexBase virtual function, which by default just returns a couple of
// pointers. In theory a client could override the lock function to do all sorts of
// things like reading data from GPU memory, or decompressing data on the fly, but such things
// do not seem all that likely or useful, given the performance cost.
m_primitive_manager.lock();
#endif
}
btGImpactMeshShapePart::~btGImpactMeshShapePart()
{
// moved from .h to .cpp because of conditional compilation
#if BT_THREADSAFE
m_primitive_manager.unlock();
#endif
}
void btGImpactMeshShapePart::lockChildShapes() const
{
// moved from .h to .cpp because of conditional compilation
#if ! BT_THREADSAFE
// called in the narrowphase -- not threadsafe!
void * dummy = (void*) ( m_box_set.getPrimitiveManager() );
TrimeshPrimitiveManager * dummymanager = static_cast<TrimeshPrimitiveManager *>( dummy );
dummymanager->lock();
#endif
}
void btGImpactMeshShapePart::unlockChildShapes() const
{
// moved from .h to .cpp because of conditional compilation
#if ! BT_THREADSAFE
// called in the narrowphase -- not threadsafe!
void * dummy = (void*) ( m_box_set.getPrimitiveManager() );
TrimeshPrimitiveManager * dummymanager = static_cast<TrimeshPrimitiveManager *>( dummy );
dummymanager->unlock();
#endif
}
#define CALC_EXACT_INERTIA 1
void btGImpactCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
lockChildShapes();
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
int i = this->getNumChildShapes();
btScalar shapemass = mass/btScalar(i);
while(i--)
{
btVector3 temp_inertia;
m_childShapes[i]->calculateLocalInertia(shapemass,temp_inertia);
if(childrenHasTransform())
{
inertia = gim_inertia_add_transformed( inertia,temp_inertia,m_childTransforms[i]);
}
else
{
inertia = gim_inertia_add_transformed( inertia,temp_inertia,btTransform::getIdentity());
}
}
#else
// Calc box inertia
btScalar lx= m_localAABB.m_max[0] - m_localAABB.m_min[0];
btScalar ly= m_localAABB.m_max[1] - m_localAABB.m_min[1];
btScalar lz= m_localAABB.m_max[2] - m_localAABB.m_min[2];
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
#endif
unlockChildShapes();
}
void btGImpactMeshShapePart::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
lockChildShapes();
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
int i = this->getVertexCount();
btScalar pointmass = mass/btScalar(i);
while(i--)
{
btVector3 pointintertia;
this->getVertex(i,pointintertia);
pointintertia = gim_get_point_inertia(pointintertia,pointmass);
inertia+=pointintertia;
}
#else
// Calc box inertia
btScalar lx= m_localAABB.m_max[0] - m_localAABB.m_min[0];
btScalar ly= m_localAABB.m_max[1] - m_localAABB.m_min[1];
btScalar lz= m_localAABB.m_max[2] - m_localAABB.m_min[2];
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
#endif
unlockChildShapes();
}
void btGImpactMeshShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
int i = this->getMeshPartCount();
btScalar partmass = mass/btScalar(i);
while(i--)
{
btVector3 partinertia;
getMeshPart(i)->calculateLocalInertia(partmass,partinertia);
inertia+=partinertia;
}
#else
// Calc box inertia
btScalar lx= m_localAABB.m_max[0] - m_localAABB.m_min[0];
btScalar ly= m_localAABB.m_max[1] - m_localAABB.m_min[1];
btScalar lz= m_localAABB.m_max[2] - m_localAABB.m_min[2];
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(0.08333333);
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
#endif
}
void btGImpactMeshShape::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btCollisionWorld::RayResultCallback& resultCallback) const
{
}
void btGImpactMeshShapePart::processAllTrianglesRay(btTriangleCallback* callback,const btVector3& rayFrom, const btVector3& rayTo) const
{
lockChildShapes();
btAlignedObjectArray<int> collided;
btVector3 rayDir(rayTo - rayFrom);
rayDir.normalize();
m_box_set.rayQuery(rayDir, rayFrom, collided);
if(collided.size()==0)
{
unlockChildShapes();
return;
}
int part = (int)getPart();
btPrimitiveTriangle triangle;
int i = collided.size();
while(i--)
{
getPrimitiveTriangle(collided[i],triangle);
callback->processTriangle(triangle.m_vertices,part,collided[i]);
}
unlockChildShapes();
}
void btGImpactMeshShapePart::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
lockChildShapes();
btAABB box;
box.m_min = aabbMin;
box.m_max = aabbMax;
btAlignedObjectArray<int> collided;
m_box_set.boxQuery(box,collided);
if(collided.size()==0)
{
unlockChildShapes();
return;
}
int part = (int)getPart();
btPrimitiveTriangle triangle;
int i = collided.size();
while(i--)
{
this->getPrimitiveTriangle(collided[i],triangle);
callback->processTriangle(triangle.m_vertices,part,collided[i]);
}
unlockChildShapes();
}
void btGImpactMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
int i = m_mesh_parts.size();
while(i--)
{
m_mesh_parts[i]->processAllTriangles(callback,aabbMin,aabbMax);
}
}
void btGImpactMeshShape::processAllTrianglesRay(btTriangleCallback* callback,const btVector3& rayFrom, const btVector3& rayTo) const
{
int i = m_mesh_parts.size();
while(i--)
{
m_mesh_parts[i]->processAllTrianglesRay(callback, rayFrom, rayTo);
}
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
const char* btGImpactMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
{
btGImpactMeshShapeData* trimeshData = (btGImpactMeshShapeData*) dataBuffer;
btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer);
m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
trimeshData->m_collisionMargin = float(m_collisionMargin);
localScaling.serializeFloat(trimeshData->m_localScaling);
trimeshData->m_gimpactSubType = int(getGImpactShapeType());
return "btGImpactMeshShapeData";
}