Files
bullet3/btgui/Bullet3AppSupport/Bullet2RigidBodyDemo.cpp
erwin coumans 1e13454511 Added experimental implicit gyroscopic force implementation, one by Michael Ewert, and another by Cooper (from OpenDE)
Will also add Erin Catto's local implicit version from the GDC 2015 tutorial
Added demo for btGeneric6DofSpring2Constraint, thanks to Gabor Puhr
Add gfxBridge.autogenerateGraphicsObjects method for Bullet 2 demos in new framework (need to implement all Bullet 2 collision shape types...)
Use 1,1,1 for local scaling in btStaticPlaneShape
2015-03-24 15:55:05 -07:00

432 lines
11 KiB
C++

#include "Bullet2RigidBodyDemo.h"
#include "btBulletDynamicsCommon.h"
#include "OpenGLWindow/CommonGraphicsApp.h"
#include "OpenGLWindow/CommonRenderInterface.h"
#include "Bullet3Common/b3Scalar.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"//to create a tesselation of a generic btConvexShape
#include "MyDebugDrawer.h"
#include "OpenGLWindow/GLInstanceGraphicsShape.h"
static btVector4 sColors[4] =
{
btVector4(0.3,0.3,1,1),
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
//btVector4(1,1,0,1),
};
struct MyGraphicsPhysicsBridge : public GraphicsPhysicsBridge
{
CommonGraphicsApp* m_glApp;
MyDebugDrawer* m_debugDraw;
int m_curColor;
MyGraphicsPhysicsBridge(CommonGraphicsApp* glApp)
:m_glApp(glApp), m_debugDraw(0), m_curColor(0)
{
}
virtual void createRigidBodyGraphicsObject(btRigidBody* body, const btVector3& color)
{
createCollisionObjectGraphicsObject(body,color);
}
virtual void createCollisionObjectGraphicsObject(btCollisionObject* body, const btVector3& color)
{
btCollisionShape* shape = body->getCollisionShape();
btTransform startTransform = body->getWorldTransform();
int graphicsShapeId = shape->getUserIndex();
if (graphicsShapeId>=0)
{
// btAssert(graphicsShapeId >= 0);
btVector3 localScaling = shape->getLocalScaling();
int graphicsInstanceId = m_glApp->m_renderer->registerGraphicsInstance(graphicsShapeId, startTransform.getOrigin(), startTransform.getRotation(), color, localScaling);
body->setUserIndex(graphicsInstanceId);
}
}
virtual int registerGraphicsShape(const float* vertices, int numvertices, const int* indices, int numIndices)
{
int shapeId = m_glApp->m_renderer->registerShape(vertices, numvertices,indices,numIndices);
return shapeId;
}
virtual int registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling)
{
return m_glApp->m_renderer->registerGraphicsInstance(shapeIndex,position,quaternion,color,scaling);
}
virtual void createCollisionShapeGraphicsObject(btCollisionShape* collisionShape, const btTransform& parentTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut)
{
//todo: support all collision shape types
switch (collisionShape->getShapeType())
{
case STATIC_PLANE_PROXYTYPE:
{
//draw a box, oriented along the plane normal
const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(collisionShape);
btScalar planeConst = staticPlaneShape->getPlaneConstant();
const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
btVector3 planeOrigin = planeNormal * planeConst;
btVector3 vec0,vec1;
btPlaneSpace1(planeNormal,vec0,vec1);
btScalar vecLen = 100.f;
btVector3 verts[4];
verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen;
verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen;
verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen;
verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen;
int startIndex = verticesOut.size();
indicesOut.push_back(startIndex+0);
indicesOut.push_back(startIndex+1);
indicesOut.push_back(startIndex+2);
indicesOut.push_back(startIndex+0);
indicesOut.push_back(startIndex+2);
indicesOut.push_back(startIndex+3);
btVector3 triNormal = parentTransform.getBasis()*planeNormal;
for (int i=0;i<4;i++)
{
GLInstanceVertex vtx;
btVector3 pos =parentTransform*verts[i];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 0.f;
vtx.normal[0] =triNormal.x();
vtx.normal[1] =triNormal.y();
vtx.normal[2] =triNormal.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
verticesOut.push_back(vtx);
}
break;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
{
btAssert(0);
break;
}
default:
{
if (collisionShape->isConvex())
{
btConvexShape* convex = (btConvexShape*)collisionShape;
{
btShapeHull* hull = new btShapeHull(convex);
hull->buildHull(0.0);
{
//int strideInBytes = 9*sizeof(float);
//int numVertices = hull->numVertices();
//int numIndices =hull->numIndices();
for (int t=0;t<hull->numTriangles();t++)
{
btVector3 triNormal;
int index0 = hull->getIndexPointer()[t*3+0];
int index1 = hull->getIndexPointer()[t*3+1];
int index2 = hull->getIndexPointer()[t*3+2];
btVector3 pos0 =parentTransform*hull->getVertexPointer()[index0];
btVector3 pos1 =parentTransform*hull->getVertexPointer()[index1];
btVector3 pos2 =parentTransform*hull->getVertexPointer()[index2];
triNormal = (pos1-pos0).cross(pos2-pos0);
triNormal.normalize();
for (int v=0;v<3;v++)
{
int index = hull->getIndexPointer()[t*3+v];
GLInstanceVertex vtx;
btVector3 pos =parentTransform*hull->getVertexPointer()[index];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 0.f;
vtx.normal[0] =triNormal.x();
vtx.normal[1] =triNormal.y();
vtx.normal[2] =triNormal.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
indicesOut.push_back(verticesOut.size());
verticesOut.push_back(vtx);
}
}
}
}
} else
{
if (collisionShape->isCompound())
{
btCompoundShape* compound = (btCompoundShape*) collisionShape;
for (int i=0;i<compound->getNumChildShapes();i++)
{
btTransform childWorldTrans = parentTransform * compound->getChildTransform(i);
createCollisionShapeGraphicsObject(compound->getChildShape(i),childWorldTrans,verticesOut,indicesOut);
}
} else
{
btAssert(0);
}
}
}
};
}
virtual void createCollisionShapeGraphicsObject(btCollisionShape* collisionShape)
{
//already has a graphics object?
if (collisionShape->getUserIndex()>=0)
return;
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans;startTrans.setIdentity();
createCollisionShapeGraphicsObject(collisionShape,startTrans,vertices,indices);
if (vertices.size() && indices.size())
{
int shapeId = m_glApp->m_renderer->registerShape(&vertices[0].xyzw[0],vertices.size(),&indices[0],indices.size());
collisionShape->setUserIndex(shapeId);
}
}
virtual void syncPhysicsToGraphics(const btDiscreteDynamicsWorld* rbWorld)
{
int numCollisionObjects = rbWorld->getNumCollisionObjects();
for (int i = 0; i<numCollisionObjects; i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
btVector3 pos = colObj->getWorldTransform().getOrigin();
btQuaternion orn = colObj->getWorldTransform().getRotation();
int index = colObj->getUserIndex();
if (index >= 0)
{
m_glApp->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, index);
}
}
m_glApp->m_renderer->writeTransforms();
}
virtual void createPhysicsDebugDrawer(btDiscreteDynamicsWorld* rbWorld)
{
btAssert(rbWorld);
m_debugDraw = new MyDebugDrawer(m_glApp);
rbWorld->setDebugDrawer(m_debugDraw );
m_debugDraw->setDebugMode(
btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawAabb
//btIDebugDraw::DBG_DrawContactPoints
);
}
virtual struct Common2dCanvasInterface* get2dCanvasInterface()
{
return m_glApp->m_2dCanvasInterface;
}
virtual CommonParameterInterface* getParameterInterface()
{
return m_glApp->m_parameterInterface;
}
virtual void setUpAxis(int axis)
{
m_glApp->setUpAxis(axis);
}
btVector3 selectColor()
{
btVector4 color = sColors[m_curColor];
m_curColor++;
m_curColor&=3;
return color;
}
virtual void autogenerateGraphicsObjects(btDiscreteDynamicsWorld* rbWorld)
{
for (int i=0;i<rbWorld->getNumCollisionObjects();i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
//btRigidBody* body = btRigidBody::upcast(colObj);
//does this also work for btMultiBody/btMultiBodyLinkCollider?
createCollisionShapeGraphicsObject(colObj->getCollisionShape());
btVector3 color= selectColor();
createCollisionObjectGraphicsObject(colObj,color);
}
}
};
Bullet2RigidBodyDemo::Bullet2RigidBodyDemo(CommonGraphicsApp* app, CommonPhysicsSetup* physicsSetup)
: m_physicsSetup(physicsSetup),
m_controlPressed(false),
m_altPressed(false),
m_glApp(app)
{
}
void Bullet2RigidBodyDemo::initPhysics()
{
MyGraphicsPhysicsBridge glBridge(m_glApp);
glBridge.setUpAxis(1);
m_physicsSetup->initPhysics(glBridge);
m_glApp->m_renderer->writeTransforms();
}
void Bullet2RigidBodyDemo::exitPhysics()
{
m_physicsSetup->exitPhysics();
}
void Bullet2RigidBodyDemo::stepSimulation(float deltaTime)
{
m_physicsSetup->stepSimulation(deltaTime);
}
void Bullet2RigidBodyDemo::renderScene()
{
//sync graphics -> physics world transforms
MyGraphicsPhysicsBridge glBridge(m_glApp);
m_physicsSetup->syncPhysicsToGraphics(glBridge);
m_glApp->m_renderer->renderScene();
}
void Bullet2RigidBodyDemo::physicsDebugDraw(int debugDrawFlags)
{
m_physicsSetup->debugDraw(debugDrawFlags);
}
Bullet2RigidBodyDemo::~Bullet2RigidBodyDemo()
{
}
btVector3 Bullet2RigidBodyDemo::getRayTo(int x,int y)
{
if (!m_glApp->m_renderer)
{
btAssert(0);
return btVector3(0,0,0);
}
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = b3Scalar(2.0) * b3Atan(tanFov);
btVector3 camPos,camTarget;
m_glApp->m_renderer->getCameraPosition(camPos);
m_glApp->m_renderer->getCameraTargetPosition(camTarget);
btVector3 rayFrom = camPos;
btVector3 rayForward = (camTarget-camPos);
rayForward.normalize();
float farPlane = 10000.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 cameraUp=btVector3(0,0,0);
cameraUp[m_glApp->getUpAxis()]=1;
btVector3 vertical = cameraUp;
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
b3Scalar aspect;
float width = m_glApp->m_renderer->getScreenWidth();
float height = m_glApp->m_renderer->getScreenHeight();
aspect = width / height;
hor*=aspect;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/width;
btVector3 dVert = vertical * 1.f/height;
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += btScalar(x) * dHor;
rayTo -= btScalar(y) * dVert;
return rayTo;
}
bool Bullet2RigidBodyDemo::mouseMoveCallback(float x,float y)
{
btVector3 rayTo = getRayTo(x, y);
btVector3 rayFrom;
m_glApp->m_renderer->getCameraPosition(rayFrom);
m_physicsSetup->movePickedBody(rayFrom,rayTo);
return false;
}
bool Bullet2RigidBodyDemo::mouseButtonCallback(int button, int state, float x, float y)
{
if (state==1)
{
if(button==0 && (!m_altPressed && !m_controlPressed))
{
btVector3 camPos;
m_glApp->m_renderer->getCameraPosition(camPos);
btVector3 rayFrom = camPos;
btVector3 rayTo = getRayTo(x,y);
m_physicsSetup->pickBody(rayFrom, rayTo);
}
} else
{
if (button==0)
{
m_physicsSetup->removePickingConstraint();
//remove p2p
}
}
//printf("button=%d, state=%d\n",button,state);
return false;
}