Files
bullet3/Extras/BulletMultiThreaded/SpuGatheringCollisionDispatcher.cpp
ejcoumans 87df3d0f32 Based on feedback from another professional game company, there are several improvements, including some API change...
Some dynamic memory allocations have been replace by pool allocation or stack allocations.
quantized aabb versus quantized aabb overlap check is made branch-free (helps a lot on consoles PS3/XBox 360)
Collision algorithms are now created through a new btDefaultCollisionConfiguration, to decouple dependency (this is the API change):
Example:
	btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new	btCollisionDispatcher(collisionConfiguration);
2007-09-08 05:40:01 +00:00

213 lines
7.3 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SpuGatheringCollisionDispatcher.h"
#include "SpuCollisionTaskProcess.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h"
#include "SpuContactManifoldCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
SpuGatheringCollisionDispatcher::SpuGatheringCollisionDispatcher(class btThreadSupportInterface* threadInterface, unsigned int maxNumOutstandingTasks,btCollisionConfiguration* collisionConfiguration)
:btCollisionDispatcher(collisionConfiguration),
m_spuCollisionTaskProcess(0),
m_threadInterface(threadInterface),
m_maxNumOutstandingTasks(maxNumOutstandingTasks)
{
}
bool SpuGatheringCollisionDispatcher::supportsDispatchPairOnSpu(int proxyType0,int proxyType1)
{
bool supported0 = (
(proxyType0 == BOX_SHAPE_PROXYTYPE) ||
(proxyType0 == TRIANGLE_SHAPE_PROXYTYPE) ||
(proxyType0 == SPHERE_SHAPE_PROXYTYPE) ||
(proxyType0 == CAPSULE_SHAPE_PROXYTYPE) ||
(proxyType0 == CYLINDER_SHAPE_PROXYTYPE) ||
// (proxyType0 == CONE_SHAPE_PROXYTYPE) ||
(proxyType0 == TRIANGLE_MESH_SHAPE_PROXYTYPE) ||
(proxyType0 == CONVEX_HULL_SHAPE_PROXYTYPE)||
(proxyType0 == COMPOUND_SHAPE_PROXYTYPE)
);
bool supported1 = (
(proxyType1 == BOX_SHAPE_PROXYTYPE) ||
(proxyType1 == TRIANGLE_SHAPE_PROXYTYPE) ||
(proxyType1 == SPHERE_SHAPE_PROXYTYPE) ||
(proxyType1 == CAPSULE_SHAPE_PROXYTYPE) ||
(proxyType1 == CYLINDER_SHAPE_PROXYTYPE) ||
// (proxyType1 == CONE_SHAPE_PROXYTYPE) ||
(proxyType1 == TRIANGLE_MESH_SHAPE_PROXYTYPE) ||
(proxyType1 == CONVEX_HULL_SHAPE_PROXYTYPE) ||
(proxyType1 == COMPOUND_SHAPE_PROXYTYPE)
);
return supported0 && supported1;
}
SpuGatheringCollisionDispatcher::~SpuGatheringCollisionDispatcher()
{
if (m_spuCollisionTaskProcess)
delete m_spuCollisionTaskProcess;
}
#include "stdio.h"
///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc)
///this is useful for the collision dispatcher.
class btSpuCollisionPairCallback : public btOverlapCallback
{
btDispatcherInfo& m_dispatchInfo;
SpuGatheringCollisionDispatcher* m_dispatcher;
public:
btSpuCollisionPairCallback(btDispatcherInfo& dispatchInfo,SpuGatheringCollisionDispatcher* dispatcher)
:m_dispatchInfo(dispatchInfo),
m_dispatcher(dispatcher)
{
}
virtual bool processOverlap(btBroadphasePair& collisionPair)
{
//PPU version
//(*m_dispatcher->getNearCallback())(collisionPair,*m_dispatcher,m_dispatchInfo);
//only support discrete collision detection for now, we could fallback on PPU/unoptimized version for TOI/CCD
btAssert(m_dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE);
//by default, Bullet will use this near callback
{
///userInfo is used to determine if the SPU has to handle this case or not (skip PPU tasks)
if (!collisionPair.m_userInfo)
{
collisionPair.m_userInfo = (void*) 1;
}
if (!collisionPair.m_algorithm)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher1 = m_dispatcher;
ci.m_manifold = 0;
if (m_dispatcher->needsCollision(colObj0,colObj1))
{
int proxyType0 = colObj0->getCollisionShape()->getShapeType();
int proxyType1 = colObj1->getCollisionShape()->getShapeType();
if (m_dispatcher->supportsDispatchPairOnSpu(proxyType0,proxyType1))
{
int so = sizeof(SpuContactManifoldCollisionAlgorithm);
void* mem = m_dispatcher->allocateCollisionAlgorithm(so);
collisionPair.m_algorithm = new(mem) SpuContactManifoldCollisionAlgorithm(ci,colObj0,colObj1);
collisionPair.m_userInfo = (void*) 2;
} else
{
collisionPair.m_algorithm = m_dispatcher->findAlgorithm(colObj0,colObj1);
collisionPair.m_userInfo = (void*)3;
}
}
}
}
return false;
}
};
void SpuGatheringCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher)
{
if (dispatchInfo.m_enableSPU)
{
if (!m_spuCollisionTaskProcess)
m_spuCollisionTaskProcess = new SpuCollisionTaskProcess(m_threadInterface,m_maxNumOutstandingTasks);
m_spuCollisionTaskProcess->initialize2();
///modified version of btCollisionDispatcher::dispatchAllCollisionPairs:
{
btSpuCollisionPairCallback collisionCallback(dispatchInfo,this);
pairCache->processAllOverlappingPairs(&collisionCallback,dispatcher);
}
//send one big batch
int numTotalPairs = pairCache->getNumOverlappingPairs();
btBroadphasePair* pairPtr = pairCache->getOverlappingPairArrayPtr();
int i;
for (i=0;i<numTotalPairs;)
{
//Performance Hint: tweak this number during benchmarking
static const int pairRange = SPU_BATCHSIZE_BROADPHASE_PAIRS;
int endIndex = (i+pairRange) < numTotalPairs ? i+pairRange : numTotalPairs;
m_spuCollisionTaskProcess->addWorkToTask(pairPtr,i,endIndex);
i = endIndex;
}
//handle PPU fallback pairs
for (i=0;i<numTotalPairs;i++)
{
btBroadphasePair& collisionPair = pairPtr[i];
if (collisionPair.m_userInfo == (void*)3)
{
if (collisionPair.m_algorithm)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
//make sure all SPU work is done
m_spuCollisionTaskProcess->flush2();
} else
{
///PPU fallback
///!Need to make sure to clear all 'algorithms' when switching between SPU and PPU
btCollisionDispatcher::dispatchAllCollisionPairs(pairCache,dispatchInfo,dispatcher);
}
}