This change adds support for calculating Jacobians and dot(Jacobian)*u terms, along with the required support for the 3xN matrices in the standalone math library. It also adds functions to compute kinematics only (position, velocity, accel). To facilitate tests, the Cl also adds a RandomTreeCreator to create randomized multibody trees. Thanks to Thomas Buschmann for this contribution!
416 lines
11 KiB
C++
416 lines
11 KiB
C++
/// @file Built-In Matrix-Vector functions
|
|
#ifndef IDMATVEC_HPP_
|
|
#define IDMATVEC_HPP_
|
|
|
|
#include <cstdlib>
|
|
|
|
#include "../IDConfig.hpp"
|
|
#define BT_ID_HAVE_MAT3X
|
|
|
|
namespace btInverseDynamics {
|
|
class vec3;
|
|
class vecx;
|
|
class mat33;
|
|
class matxx;
|
|
class mat3x;
|
|
|
|
/// This is a very basic implementation to enable stand-alone use of the library.
|
|
/// The implementation is not really optimized and misses many features that you would
|
|
/// want from a "fully featured" linear math library.
|
|
class vec3 {
|
|
public:
|
|
idScalar& operator()(int i) { return m_data[i]; }
|
|
const idScalar& operator()(int i) const { return m_data[i]; }
|
|
const int size() const { return 3; }
|
|
const vec3& operator=(const vec3& rhs);
|
|
const vec3& operator+=(const vec3& b);
|
|
const vec3& operator-=(const vec3& b);
|
|
vec3 cross(const vec3& b) const;
|
|
idScalar dot(const vec3& b) const;
|
|
|
|
friend vec3 operator*(const mat33& a, const vec3& b);
|
|
friend vec3 operator*(const vec3& a, const idScalar& s);
|
|
friend vec3 operator*(const idScalar& s, const vec3& a);
|
|
|
|
friend vec3 operator+(const vec3& a, const vec3& b);
|
|
friend vec3 operator-(const vec3& a, const vec3& b);
|
|
friend vec3 operator/(const vec3& a, const idScalar& s);
|
|
|
|
private:
|
|
idScalar m_data[3];
|
|
};
|
|
|
|
class mat33 {
|
|
public:
|
|
idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
|
|
const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
|
|
const mat33& operator=(const mat33& rhs);
|
|
mat33 transpose() const;
|
|
const mat33& operator+=(const mat33& b);
|
|
const mat33& operator-=(const mat33& b);
|
|
|
|
friend mat33 operator*(const mat33& a, const mat33& b);
|
|
friend vec3 operator*(const mat33& a, const vec3& b);
|
|
friend mat33 operator*(const mat33& a, const idScalar& s);
|
|
friend mat33 operator*(const idScalar& s, const mat33& a);
|
|
friend mat33 operator+(const mat33& a, const mat33& b);
|
|
friend mat33 operator-(const mat33& a, const mat33& b);
|
|
friend mat33 operator/(const mat33& a, const idScalar& s);
|
|
|
|
private:
|
|
// layout is [0,1,2;3,4,5;6,7,8]
|
|
idScalar m_data[9];
|
|
};
|
|
|
|
class vecx {
|
|
public:
|
|
vecx(int size) : m_size(size) {
|
|
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
|
|
}
|
|
~vecx() { idFree(m_data); }
|
|
const vecx& operator=(const vecx& rhs);
|
|
idScalar& operator()(int i) { return m_data[i]; }
|
|
const idScalar& operator()(int i) const { return m_data[i]; }
|
|
const int& size() const { return m_size; }
|
|
|
|
friend vecx operator*(const vecx& a, const idScalar& s);
|
|
friend vecx operator*(const idScalar& s, const vecx& a);
|
|
|
|
friend vecx operator+(const vecx& a, const vecx& b);
|
|
friend vecx operator-(const vecx& a, const vecx& b);
|
|
friend vecx operator/(const vecx& a, const idScalar& s);
|
|
|
|
private:
|
|
int m_size;
|
|
idScalar* m_data;
|
|
};
|
|
|
|
class matxx {
|
|
public:
|
|
matxx() {
|
|
m_data = 0x0;
|
|
m_cols=0;
|
|
m_rows=0;
|
|
}
|
|
matxx(int rows, int cols) : m_rows(rows), m_cols(cols) {
|
|
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
|
|
}
|
|
~matxx() { idFree(m_data); }
|
|
idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
|
|
const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
|
|
const int& rows() const { return m_rows; }
|
|
const int& cols() const { return m_cols; }
|
|
|
|
private:
|
|
int m_rows;
|
|
int m_cols;
|
|
idScalar* m_data;
|
|
};
|
|
|
|
class mat3x {
|
|
public:
|
|
mat3x() {
|
|
m_data = 0x0;
|
|
m_cols=0;
|
|
}
|
|
mat3x(const mat3x&rhs) {
|
|
m_cols=rhs.m_cols;
|
|
allocate();
|
|
*this = rhs;
|
|
}
|
|
mat3x(int rows, int cols): m_cols(cols) {
|
|
allocate();
|
|
};
|
|
void operator=(const mat3x& rhs) {
|
|
if (m_cols != rhs.m_cols) {
|
|
error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
|
|
abort();
|
|
}
|
|
for(int i=0;i<3*m_cols;i++) {
|
|
m_data[i] = rhs.m_data[i];
|
|
}
|
|
}
|
|
|
|
~mat3x() {
|
|
free();
|
|
}
|
|
idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
|
|
const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
|
|
int rows() const { return m_rows; }
|
|
const int& cols() const { return m_cols; }
|
|
void resize(int rows, int cols) {
|
|
m_cols=cols;
|
|
free();
|
|
allocate();
|
|
}
|
|
void setZero() {
|
|
memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols);
|
|
}
|
|
// avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
|
|
private:
|
|
void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));}
|
|
void free() { idFree(m_data);}
|
|
enum {m_rows=3};
|
|
int m_cols;
|
|
idScalar* m_data;
|
|
};
|
|
|
|
inline void resize(mat3x &m, idArrayIdx size) {
|
|
m.resize(3, size);
|
|
m.setZero();
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
// Implementations
|
|
inline const vec3& vec3::operator=(const vec3& rhs) {
|
|
if (&rhs != this) {
|
|
memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline vec3 vec3::cross(const vec3& b) const {
|
|
vec3 result;
|
|
result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
|
|
result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
|
|
result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0];
|
|
|
|
return result;
|
|
}
|
|
|
|
inline idScalar vec3::dot(const vec3& b) const {
|
|
return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
|
|
}
|
|
|
|
inline const mat33& mat33::operator=(const mat33& rhs) {
|
|
if (&rhs != this) {
|
|
memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
|
|
}
|
|
return *this;
|
|
}
|
|
inline mat33 mat33::transpose() const {
|
|
mat33 result;
|
|
result.m_data[0] = m_data[0];
|
|
result.m_data[1] = m_data[3];
|
|
result.m_data[2] = m_data[6];
|
|
result.m_data[3] = m_data[1];
|
|
result.m_data[4] = m_data[4];
|
|
result.m_data[5] = m_data[7];
|
|
result.m_data[6] = m_data[2];
|
|
result.m_data[7] = m_data[5];
|
|
result.m_data[8] = m_data[8];
|
|
|
|
return result;
|
|
}
|
|
|
|
inline mat33 operator*(const mat33& a, const mat33& b) {
|
|
mat33 result;
|
|
result.m_data[0] =
|
|
a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
|
|
result.m_data[1] =
|
|
a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7];
|
|
result.m_data[2] =
|
|
a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8];
|
|
result.m_data[3] =
|
|
a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6];
|
|
result.m_data[4] =
|
|
a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7];
|
|
result.m_data[5] =
|
|
a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8];
|
|
result.m_data[6] =
|
|
a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6];
|
|
result.m_data[7] =
|
|
a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7];
|
|
result.m_data[8] =
|
|
a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8];
|
|
|
|
return result;
|
|
}
|
|
|
|
inline const mat33& mat33::operator+=(const mat33& b) {
|
|
for (int i = 0; i < 9; i++) {
|
|
m_data[i] += b.m_data[i];
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline const mat33& mat33::operator-=(const mat33& b) {
|
|
for (int i = 0; i < 9; i++) {
|
|
m_data[i] -= b.m_data[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline vec3 operator*(const mat33& a, const vec3& b) {
|
|
vec3 result;
|
|
|
|
result.m_data[0] =
|
|
a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2];
|
|
result.m_data[1] =
|
|
a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2];
|
|
result.m_data[2] =
|
|
a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2];
|
|
|
|
return result;
|
|
}
|
|
|
|
inline const vec3& vec3::operator+=(const vec3& b) {
|
|
for (int i = 0; i < 3; i++) {
|
|
m_data[i] += b.m_data[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline const vec3& vec3::operator-=(const vec3& b) {
|
|
for (int i = 0; i < 3; i++) {
|
|
m_data[i] -= b.m_data[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline mat33 operator*(const mat33& a, const idScalar& s) {
|
|
mat33 result;
|
|
for (int i = 0; i < 9; i++) {
|
|
result.m_data[i] = a.m_data[i] * s;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
|
|
|
|
inline vec3 operator*(const vec3& a, const idScalar& s) {
|
|
vec3 result;
|
|
for (int i = 0; i < 3; i++) {
|
|
result.m_data[i] = a.m_data[i] * s;
|
|
}
|
|
return result;
|
|
}
|
|
inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
|
|
|
|
inline mat33 operator+(const mat33& a, const mat33& b) {
|
|
mat33 result;
|
|
for (int i = 0; i < 9; i++) {
|
|
result.m_data[i] = a.m_data[i] + b.m_data[i];
|
|
}
|
|
return result;
|
|
}
|
|
inline vec3 operator+(const vec3& a, const vec3& b) {
|
|
vec3 result;
|
|
for (int i = 0; i < 3; i++) {
|
|
result.m_data[i] = a.m_data[i] + b.m_data[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline mat33 operator-(const mat33& a, const mat33& b) {
|
|
mat33 result;
|
|
for (int i = 0; i < 9; i++) {
|
|
result.m_data[i] = a.m_data[i] - b.m_data[i];
|
|
}
|
|
return result;
|
|
}
|
|
inline vec3 operator-(const vec3& a, const vec3& b) {
|
|
vec3 result;
|
|
for (int i = 0; i < 3; i++) {
|
|
result.m_data[i] = a.m_data[i] - b.m_data[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline mat33 operator/(const mat33& a, const idScalar& s) {
|
|
mat33 result;
|
|
for (int i = 0; i < 9; i++) {
|
|
result.m_data[i] = a.m_data[i] / s;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline vec3 operator/(const vec3& a, const idScalar& s) {
|
|
vec3 result;
|
|
for (int i = 0; i < 3; i++) {
|
|
result.m_data[i] = a.m_data[i] / s;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline const vecx& vecx::operator=(const vecx& rhs) {
|
|
if (size() != rhs.size()) {
|
|
error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
|
|
abort();
|
|
}
|
|
if (&rhs != this) {
|
|
memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
|
|
}
|
|
return *this;
|
|
}
|
|
inline vecx operator*(const vecx& a, const idScalar& s) {
|
|
vecx result(a.size());
|
|
for (int i = 0; i < result.size(); i++) {
|
|
result.m_data[i] = a.m_data[i] * s;
|
|
}
|
|
return result;
|
|
}
|
|
inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
|
|
inline vecx operator+(const vecx& a, const vecx& b) {
|
|
vecx result(a.size());
|
|
// TODO: error handling for a.size() != b.size()??
|
|
if (a.size() != b.size()) {
|
|
error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
|
|
abort();
|
|
}
|
|
for (int i = 0; i < a.size(); i++) {
|
|
result.m_data[i] = a.m_data[i] + b.m_data[i];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
inline vecx operator-(const vecx& a, const vecx& b) {
|
|
vecx result(a.size());
|
|
// TODO: error handling for a.size() != b.size()??
|
|
if (a.size() != b.size()) {
|
|
error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
|
|
abort();
|
|
}
|
|
for (int i = 0; i < a.size(); i++) {
|
|
result.m_data[i] = a.m_data[i] - b.m_data[i];
|
|
}
|
|
return result;
|
|
}
|
|
inline vecx operator/(const vecx& a, const idScalar& s) {
|
|
vecx result(a.size());
|
|
for (int i = 0; i < result.size(); i++) {
|
|
result.m_data[i] = a.m_data[i] / s;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
inline vec3 operator*(const mat3x& a, const vecx& b) {
|
|
vec3 result;
|
|
if (a.cols() != b.size()) {
|
|
error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
|
|
abort();
|
|
}
|
|
result(0)=0.0;
|
|
result(1)=0.0;
|
|
result(2)=0.0;
|
|
for(int i=0;i<b.size();i++) {
|
|
for(int k=0;k<3;k++) {
|
|
result(k)+=a(k,i)*b(i);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
|
|
(*m)(row, col) = val;
|
|
}
|
|
|
|
inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
|
|
(*m)(row, col) = val;
|
|
}
|
|
|
|
} // namespace btInverseDynamcis
|
|
#endif
|