Files
bullet3/Extras/RigidBodyGpuPipeline/dynamics/basic_demo/Stubs/Solver.h

204 lines
5.6 KiB
C++

/*
Copyright (c) 2012 Advanced Micro Devices, Inc.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//Originally written by Takahiro Harada
#pragma once
#ifndef __ADL_SOLVER_H
#define __ADL_SOLVER_H
#include <Adl/Adl.h>
#include <AdlPrimitives/Math/Math.h>
#include <AdlPrimitives/Search/BoundSearch.h>
#include <AdlPrimitives/Sort/RadixSort.h>
#include <AdlPrimitives/Scan/PrefixScan.h>
#include <AdlPrimitives/Sort/RadixSort32.h>
//#include <AdlPhysics/TypeDefinition.h>
#include "AdlRigidBody.h"
#include "AdlContact4.h"
//#include "AdlPhysics/Batching/Batching.h>
#define MYF4 float4
#define MAKE_MYF4 make_float4
//#define MYF4 float4sse
//#define MAKE_MYF4 make_float4sse
#include "AdlConstraint4.h"
namespace adl
{
class SolverBase
{
public:
struct ConstraintData
{
ConstraintData(): m_b(0.f), m_appliedRambdaDt(0.f) {}
float4 m_linear; // have to be normalized
float4 m_angular0;
float4 m_angular1;
float m_jacCoeffInv;
float m_b;
float m_appliedRambdaDt;
u32 m_bodyAPtr;
u32 m_bodyBPtr;
bool isInvalid() const { return ((u32)m_bodyAPtr+(u32)m_bodyBPtr) == 0; }
float getFrictionCoeff() const { return m_linear.w; }
void setFrictionCoeff(float coeff) { m_linear.w = coeff; }
};
struct ConstraintCfg
{
ConstraintCfg( float dt = 0.f ): m_positionDrift( 0.005f ), m_positionConstraintCoeff( 0.2f ), m_dt(dt), m_staticIdx(-1) {}
float m_positionDrift;
float m_positionConstraintCoeff;
float m_dt;
bool m_enableParallelSolve;
float m_averageExtent;
int m_staticIdx;
};
static
__inline
Buffer<Contact4>* allocateContact4( const Device* device, int capacity )
{
return new Buffer<Contact4>( device, capacity );
}
static
__inline
void deallocateContact4( Buffer<Contact4>* data ) { delete data; }
static
__inline
SolverData allocateConstraint4( const Device* device, int capacity )
{
return new Buffer<Constraint4>( device, capacity );
}
static
__inline
void deallocateConstraint4( SolverData data ) { delete (Buffer<Constraint4>*)data; }
static
__inline
void* allocateFrictionConstraint( const Device* device, int capacity, u32 type = 0 )
{
return 0;
}
static
__inline
void deallocateFrictionConstraint( void* data )
{
}
enum
{
N_SPLIT = 16,
N_BATCHES = 4,
N_OBJ_PER_SPLIT = 10,
N_TASKS_PER_BATCH = N_SPLIT*N_SPLIT,
};
};
template<DeviceType TYPE>
class Solver : public SolverBase
{
public:
typedef Launcher::BufferInfo BufferInfo;
struct Data
{
Data() : m_nIterations(4){}
const Device* m_device;
void* m_parallelSolveData;
int m_nIterations;
Kernel* m_batchingKernel;
Kernel* m_batchSolveKernel;
Kernel* m_contactToConstraintKernel;
Kernel* m_setSortDataKernel;
Kernel* m_reorderContactKernel;
Kernel* m_copyConstraintKernel;
//typename RadixSort<TYPE>::Data* m_sort;
typename RadixSort32<TYPE>::Data* m_sort32;
typename BoundSearch<TYPE>::Data* m_search;
typename PrefixScan<TYPE>::Data* m_scan;
Buffer<SortData>* m_sortDataBuffer;
Buffer<Contact4>* m_contactBuffer;
};
enum
{
DYNAMIC_CONTACT_ALLOCATION_THRESHOLD = 2000000,
};
static
Data* allocate( const Device* device, int pairCapacity );
static
void deallocate( Data* data );
static
void reorderConvertToConstraints( Data* data, const Buffer<RigidBodyBase::Body>* bodyBuf,
const Buffer<RigidBodyBase::Inertia>* shapeBuf,
Buffer<Contact4>* contactsIn, SolverData contactCOut, void* additionalData,
int nContacts, const ConstraintCfg& cfg );
static
void solveContactConstraint( Data* data, const Buffer<RigidBodyBase::Body>* bodyBuf, const Buffer<RigidBodyBase::Inertia>* inertiaBuf,
SolverData constraint, void* additionalData, int n );
// static
// int createSolveTasks( int batchIdx, Data* data, const Buffer<RigidBodyBase::Body>* bodyBuf, const Buffer<RigidBodyBase::Inertia>* shapeBuf,
// SolverData constraint, int n, ThreadPool::Task* tasksOut[], int taskCapacity );
//private:
static
void convertToConstraints( Data* data, const Buffer<RigidBodyBase::Body>* bodyBuf,
const Buffer<RigidBodyBase::Inertia>* shapeBuf,
Buffer<Contact4>* contactsIn, SolverData contactCOut, void* additionalData,
int nContacts, const ConstraintCfg& cfg );
static
void sortContacts( Data* data, const Buffer<RigidBodyBase::Body>* bodyBuf,
Buffer<Contact4>* contactsIn, void* additionalData,
int nContacts, const ConstraintCfg& cfg );
static
void batchContacts( Data* data, Buffer<Contact4>* contacts, int nContacts, Buffer<u32>* n, Buffer<u32>* offsets, int staticIdx );
};
#include "Solver.inl"
#include "SolverHost.inl"
};
#undef MYF4
#undef MAKE_MYF4
#endif //__ADL_SOLVER_H