Files
bullet3/Extras/quickstep/SorLcp.cpp
ejcoumans eb23bb5c0c merged most of the changes from the branch into trunk, except for COLLADA, libxml and glut glitches.
Still need to verify to make sure no unwanted renaming is introduced.
2006-09-27 20:43:51 +00:00

850 lines
24 KiB
C++

/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser bteral Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* bteral Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#include "SorLcp.h"
#ifdef USE_SOR_SOLVER
// SOR LCP taken from ode quickstep,
// todo: write own successive overrelaxation gauss-seidel, or jacobi iterative solver
#include "LinearMath/btScalar.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include <math.h>
#include <float.h>//FLT_MAX
#ifdef WIN32
#include <memory.h>
#endif
#include <string.h>
#include <stdio.h>
#if defined (WIN32)
#include <malloc.h>
#else
#if defined (__FreeBSD__)
#include <stdlib.h>
#else
#include <alloca.h>
#endif
#endif
#include "Dynamics/BU_Joint.h"
#include "btContactSolverInfo.h"
////////////////////////////////////////////////////////////////////
//math stuff
typedef btScalar dVector4[4];
typedef btScalar dMatrix3[4*3];
#define dInfinity FLT_MAX
#define dRecip(x) ((float)(1.0f/(x))) /* reciprocal */
#define dMULTIPLY0_331NEW(A,op,B,C) \
{\
float tmp[3];\
tmp[0] = C.getX();\
tmp[1] = C.getY();\
tmp[2] = C.getZ();\
dMULTIPLYOP0_331(A,op,B,tmp);\
}
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLYOP0_331(A,op,B,C) \
(A)[0] op dDOT1((B),(C)); \
(A)[1] op dDOT1((B+4),(C)); \
(A)[2] op dDOT1((B+8),(C));
#define dAASSERT ASSERT
#define dIASSERT ASSERT
#define REAL float
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
btScalar dDOT1 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dCROSS(a,op,b,c) \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]);
#define dMULTIPLYOP2_333(A,op,B,C) \
(A)[0] op dDOT1((B),(C)); \
(A)[1] op dDOT1((B),(C+4)); \
(A)[2] op dDOT1((B),(C+8)); \
(A)[4] op dDOT1((B+4),(C)); \
(A)[5] op dDOT1((B+4),(C+4)); \
(A)[6] op dDOT1((B+4),(C+8)); \
(A)[8] op dDOT1((B+8),(C)); \
(A)[9] op dDOT1((B+8),(C+4)); \
(A)[10] op dDOT1((B+8),(C+8));
#define dMULTIPLYOP0_333(A,op,B,C) \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
(A)[4] op dDOT14((B+4),(C)); \
(A)[5] op dDOT14((B+4),(C+1)); \
(A)[6] op dDOT14((B+4),(C+2)); \
(A)[8] op dDOT14((B+8),(C)); \
(A)[9] op dDOT14((B+8),(C+1)); \
(A)[10] op dDOT14((B+8),(C+2));
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
////////////////////////////////////////////////////////////////////
#define EFFICIENT_ALIGNMENT 16
#define dEFFICIENT_SIZE(x) ((((x)-1)|(EFFICIENT_ALIGNMENT-1))+1)
/* alloca aligned to the EFFICIENT_ALIGNMENT. note that this can waste
* up to 15 bytes per allocation, depending on what alloca() returns.
*/
#define dALLOCA16(n) \
((char*)dEFFICIENT_SIZE(((size_t)(alloca((n)+(EFFICIENT_ALIGNMENT-1))))))
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
#ifdef DEBUG
#define ANSI_FTOL 1
extern "C" {
__declspec(naked) void _ftol2() {
__asm {
#if ANSI_FTOL
fnstcw WORD PTR [esp-2]
mov ax, WORD PTR [esp-2]
OR AX, 0C00h
mov WORD PTR [esp-4], ax
fldcw WORD PTR [esp-4]
fistp QWORD PTR [esp-12]
fldcw WORD PTR [esp-2]
mov eax, DWORD PTR [esp-12]
mov edx, DWORD PTR [esp-8]
#else
fistp DWORD PTR [esp-12]
mov eax, DWORD PTR [esp-12]
mov ecx, DWORD PTR [esp-8]
#endif
ret
}
}
}
#endif //DEBUG
#define ALLOCA dALLOCA16
typedef const btScalar *dRealPtr;
typedef btScalar *dRealMutablePtr;
#define dRealArray(name,n) btScalar name[n];
#define dRealAllocaArray(name,n) btScalar *name = (btScalar*) ALLOCA ((n)*sizeof(btScalar));
void dSetZero1 (btScalar *a, int n)
{
dAASSERT (a && n >= 0);
while (n > 0) {
*(a++) = 0;
n--;
}
}
void dSetValue1 (btScalar *a, int n, btScalar value)
{
dAASSERT (a && n >= 0);
while (n > 0) {
*(a++) = value;
n--;
}
}
//***************************************************************************
// configuration
// for the SOR and CG methods:
// uncomment the following line to use warm starting. this definitely
// help for motor-driven joints. unfortunately it appears to hurt
// with high-friction contacts using the SOR method. use with care
//#define WARM_STARTING 1
// for the SOR method:
// uncomment the following line to randomly reorder constraint rows
// during the solution. depending on the situation, this can help a lot
// or hardly at all, but it doesn't seem to hurt.
#define RANDOMLY_REORDER_CONSTRAINTS 1
//***************************************************************************
// various common computations involving the matrix J
// compute iMJ = inv(M)*J'
static void compute_invM_JT (int m, dRealMutablePtr J, dRealMutablePtr iMJ, int *jb,
btRigidBody * const *body, dRealPtr invI)
{
int i,j;
dRealMutablePtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
btScalar k = body[b1]->getInvMass();
for (j=0; j<3; j++) iMJ_ptr[j] = k*J_ptr[j];
dMULTIPLY0_331 (iMJ_ptr + 3, invI + 12*b1, J_ptr + 3);
if (b2 >= 0) {
k = body[b2]->getInvMass();
for (j=0; j<3; j++) iMJ_ptr[j+6] = k*J_ptr[j+6];
dMULTIPLY0_331 (iMJ_ptr + 9, invI + 12*b2, J_ptr + 9);
}
J_ptr += 12;
iMJ_ptr += 12;
}
}
#if 0
static void multiply_invM_JTSpecial (int m, int nb, dRealMutablePtr iMJ, int *jb,
dRealMutablePtr in, dRealMutablePtr out,int onlyBody1,int onlyBody2)
{
int i,j;
dRealMutablePtr out_ptr1 = out + onlyBody1*6;
for (j=0; j<6; j++)
out_ptr1[j] = 0;
if (onlyBody2 >= 0)
{
out_ptr1 = out + onlyBody2*6;
for (j=0; j<6; j++)
out_ptr1[j] = 0;
}
dRealPtr iMJ_ptr = iMJ;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
dRealMutablePtr out_ptr = out + b1*6;
if ((b1 == onlyBody1) || (b1 == onlyBody2))
{
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i] ;
}
iMJ_ptr += 6;
int b2 = jb[i*2+1];
if ((b2 == onlyBody1) || (b2 == onlyBody2))
{
if (b2 >= 0)
{
out_ptr = out + b2*6;
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i];
}
}
iMJ_ptr += 6;
}
}
#endif
// compute out = inv(M)*J'*in.
#if 0
static void multiply_invM_JT (int m, int nb, dRealMutablePtr iMJ, int *jb,
dRealMutablePtr in, dRealMutablePtr out)
{
int i,j;
dSetZero1 (out,6*nb);
dRealPtr iMJ_ptr = iMJ;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
dRealMutablePtr out_ptr = out + b1*6;
for (j=0; j<6; j++)
out_ptr[j] += iMJ_ptr[j] * in[i];
iMJ_ptr += 6;
if (b2 >= 0) {
out_ptr = out + b2*6;
for (j=0; j<6; j++) out_ptr[j] += iMJ_ptr[j] * in[i];
}
iMJ_ptr += 6;
}
}
#endif
// compute out = J*in.
static void multiply_J (int m, dRealMutablePtr J, int *jb,
dRealMutablePtr in, dRealMutablePtr out)
{
int i,j;
dRealPtr J_ptr = J;
for (i=0; i<m; i++) {
int b1 = jb[i*2];
int b2 = jb[i*2+1];
btScalar sum = 0;
dRealMutablePtr in_ptr = in + b1*6;
for (j=0; j<6; j++) sum += J_ptr[j] * in_ptr[j];
J_ptr += 6;
if (b2 >= 0) {
in_ptr = in + b2*6;
for (j=0; j<6; j++) sum += J_ptr[j] * in_ptr[j];
}
J_ptr += 6;
out[i] = sum;
}
}
//***************************************************************************
// SOR-LCP method
// nb is the number of bodies in the body array.
// J is an m*12 matrix of constraint rows
// jb is an array of first and second body numbers for each constraint row
// invI is the global frame inverse inertia for each body (stacked 3x3 matrices)
//
// this returns lambda and fc (the constraint force).
// note: fc is returned as inv(M)*J'*lambda, the constraint force is actually J'*lambda
//
// b, lo and hi are modified on exit
struct IndexError {
btScalar error; // error to sort on
int findex;
int index; // row index
};
static unsigned long seed2 = 0;
unsigned long dRand2()
{
seed2 = (1664525L*seed2 + 1013904223L) & 0xffffffff;
return seed2;
}
int dRandInt2 (int n)
{
float a = float(n) / 4294967296.0f;
return (int) (float(dRand2()) * a);
}
static void SOR_LCP (int m, int nb, dRealMutablePtr J, int *jb, btRigidBody * const *body,
dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr invMforce, dRealMutablePtr rhs,
dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
int numiter,float overRelax)
{
const int num_iterations = numiter;
const float sor_w = overRelax; // SOR over-relaxation parameter
int i,j;
#ifdef WARM_STARTING
// for warm starting, this seems to be necessary to prevent
// jerkiness in motor-driven joints. i have no idea why this works.
for (i=0; i<m; i++) lambda[i] *= 0.9;
#else
dSetZero1 (lambda,m);
#endif
// the lambda computed at the previous iteration.
// this is used to measure error for when we are reordering the indexes.
dRealAllocaArray (last_lambda,m);
// a copy of the 'hi' vector in case findex[] is being used
dRealAllocaArray (hicopy,m);
memcpy (hicopy,hi,m*sizeof(float));
// precompute iMJ = inv(M)*J'
dRealAllocaArray (iMJ,m*12);
compute_invM_JT (m,J,iMJ,jb,body,invI);
// compute fc=(inv(M)*J')*lambda. we will incrementally maintain fc
// as we change lambda.
#ifdef WARM_STARTING
multiply_invM_JT (m,nb,iMJ,jb,lambda,fc);
#else
dSetZero1 (invMforce,nb*6);
#endif
// precompute 1 / diagonals of A
dRealAllocaArray (Ad,m);
dRealPtr iMJ_ptr = iMJ;
dRealMutablePtr J_ptr = J;
for (i=0; i<m; i++) {
float sum = 0;
for (j=0; j<6; j++) sum += iMJ_ptr[j] * J_ptr[j];
if (jb[i*2+1] >= 0) {
for (j=6; j<12; j++) sum += iMJ_ptr[j] * J_ptr[j];
}
iMJ_ptr += 12;
J_ptr += 12;
Ad[i] = sor_w / sum;//(sum + cfm[i]);
}
// scale J and b by Ad
J_ptr = J;
for (i=0; i<m; i++) {
for (j=0; j<12; j++) {
J_ptr[0] *= Ad[i];
J_ptr++;
}
rhs[i] *= Ad[i];
}
// scale Ad by CFM
for (i=0; i<m; i++)
Ad[i] *= cfm[i];
// order to solve constraint rows in
IndexError *order = (IndexError*) alloca (m*sizeof(IndexError));
#ifndef REORDER_CONSTRAINTS
// make sure constraints with findex < 0 come first.
j=0;
for (i=0; i<m; i++)
if (findex[i] < 0)
order[j++].index = i;
for (i=0; i<m; i++)
if (findex[i] >= 0)
order[j++].index = i;
dIASSERT (j==m);
#endif
for (int iteration=0; iteration < num_iterations; iteration++) {
#ifdef REORDER_CONSTRAINTS
// constraints with findex < 0 always come first.
if (iteration < 2) {
// for the first two iterations, solve the constraints in
// the given order
for (i=0; i<m; i++) {
order[i].error = i;
order[i].findex = findex[i];
order[i].index = i;
}
}
else {
// sort the constraints so that the ones converging slowest
// get solved last. use the absolute (not relative) error.
for (i=0; i<m; i++) {
float v1 = dFabs (lambda[i]);
float v2 = dFabs (last_lambda[i]);
float max = (v1 > v2) ? v1 : v2;
if (max > 0) {
//@@@ relative error: order[i].error = dFabs(lambda[i]-last_lambda[i])/max;
order[i].error = dFabs(lambda[i]-last_lambda[i]);
}
else {
order[i].error = dInfinity;
}
order[i].findex = findex[i];
order[i].index = i;
}
}
qsort (order,m,sizeof(IndexError),&compare_index_error);
#endif
#ifdef RANDOMLY_REORDER_CONSTRAINTS
if ((iteration & 7) == 0) {
for (i=1; i<m; ++i) {
IndexError tmp = order[i];
int swapi = dRandInt2(i+1);
order[i] = order[swapi];
order[swapi] = tmp;
}
}
#endif
//@@@ potential optimization: swap lambda and last_lambda pointers rather
// than copying the data. we must make sure lambda is properly
// returned to the caller
memcpy (last_lambda,lambda,m*sizeof(float));
for (int i=0; i<m; i++) {
// @@@ potential optimization: we could pre-sort J and iMJ, thereby
// linearizing access to those arrays. hmmm, this does not seem
// like a win, but we should think carefully about our memory
// access pattern.
int index = order[i].index;
J_ptr = J + index*12;
iMJ_ptr = iMJ + index*12;
// set the limits for this constraint. note that 'hicopy' is used.
// this is the place where the QuickStep method differs from the
// direct LCP solving method, since that method only performs this
// limit adjustment once per time step, whereas this method performs
// once per iteration per constraint row.
// the constraints are ordered so that all lambda[] values needed have
// already been computed.
if (findex[index] >= 0) {
hi[index] = btFabs (hicopy[index] * lambda[findex[index]]);
lo[index] = -hi[index];
}
int b1 = jb[index*2];
int b2 = jb[index*2+1];
float delta = rhs[index] - lambda[index]*Ad[index];
dRealMutablePtr fc_ptr = invMforce + 6*b1;
// @@@ potential optimization: SIMD-ize this and the b2 >= 0 case
delta -=fc_ptr[0] * J_ptr[0] + fc_ptr[1] * J_ptr[1] +
fc_ptr[2] * J_ptr[2] + fc_ptr[3] * J_ptr[3] +
fc_ptr[4] * J_ptr[4] + fc_ptr[5] * J_ptr[5];
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = invMforce + 6*b2;
delta -=fc_ptr[0] * J_ptr[6] + fc_ptr[1] * J_ptr[7] +
fc_ptr[2] * J_ptr[8] + fc_ptr[3] * J_ptr[9] +
fc_ptr[4] * J_ptr[10] + fc_ptr[5] * J_ptr[11];
}
// compute lambda and clamp it to [lo,hi].
// @@@ potential optimization: does SSE have clamping instructions
// to save test+jump penalties here?
float new_lambda = lambda[index] + delta;
if (new_lambda < lo[index]) {
delta = lo[index]-lambda[index];
lambda[index] = lo[index];
}
else if (new_lambda > hi[index]) {
delta = hi[index]-lambda[index];
lambda[index] = hi[index];
}
else {
lambda[index] = new_lambda;
}
//@@@ a trick that may or may not help
//float ramp = (1-((float)(iteration+1)/(float)num_iterations));
//delta *= ramp;
// update invMforce.
// @@@ potential optimization: SIMD for this and the b2 >= 0 case
fc_ptr = invMforce + 6*b1;
fc_ptr[0] += delta * iMJ_ptr[0];
fc_ptr[1] += delta * iMJ_ptr[1];
fc_ptr[2] += delta * iMJ_ptr[2];
fc_ptr[3] += delta * iMJ_ptr[3];
fc_ptr[4] += delta * iMJ_ptr[4];
fc_ptr[5] += delta * iMJ_ptr[5];
// @@@ potential optimization: handle 1-body constraints in a separate
// loop to avoid the cost of test & jump?
if (b2 >= 0) {
fc_ptr = invMforce + 6*b2;
fc_ptr[0] += delta * iMJ_ptr[6];
fc_ptr[1] += delta * iMJ_ptr[7];
fc_ptr[2] += delta * iMJ_ptr[8];
fc_ptr[3] += delta * iMJ_ptr[9];
fc_ptr[4] += delta * iMJ_ptr[10];
fc_ptr[5] += delta * iMJ_ptr[11];
}
}
}
}
void SolveInternal1 (float global_cfm,
float global_erp,
btRigidBody * const *body, int nb,
BU_Joint * const *_joint,
int nj,
const btContactSolverInfo& solverInfo)
{
int numIter = solverInfo.m_numIterations;
float sOr = solverInfo.m_sor;
int i,j;
btScalar stepsize1 = dRecip(solverInfo.m_timeStep);
// number all bodies in the body list - set their tag values
for (i=0; i<nb; i++)
body[i]->m_odeTag = i;
// make a local copy of the joint array, because we might want to modify it.
// (the "BU_Joint *const*" declaration says we're allowed to modify the joints
// but not the joint array, because the caller might need it unchanged).
//@@@ do we really need to do this? we'll be sorting constraint rows individually, not joints
BU_Joint **joint = (BU_Joint**) alloca (nj * sizeof(BU_Joint*));
memcpy (joint,_joint,nj * sizeof(BU_Joint*));
// for all bodies, compute the inertia tensor and its inverse in the global
// frame, and compute the rotational force and add it to the torque
// accumulator. I and invI are a vertical stack of 3x4 matrices, one per body.
dRealAllocaArray (I,3*4*nb);
dRealAllocaArray (invI,3*4*nb);
/* for (i=0; i<nb; i++) {
dMatrix3 tmp;
// compute inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_I,body[i]->m_R);
// compute inverse inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
// compute rotational force
dCROSS (body[i]->m_tacc,-=,body[i]->getAngularVelocity(),tmp);
}
*/
for (i=0; i<nb; i++) {
dMatrix3 tmp;
// compute inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_I,body[i]->m_R);
dMULTIPLY0_333 (I+i*12,body[i]->m_R,tmp);
// compute inverse inertia tensor in global frame
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
// compute rotational force
dMULTIPLY0_331 (tmp,I+i*12,body[i]->getAngularVelocity());
dCROSS (body[i]->m_tacc,-=,body[i]->getAngularVelocity(),tmp);
}
// get joint information (m = total constraint dimension, nub = number of unbounded variables).
// joints with m=0 are inactive and are removed from the joints array
// entirely, so that the code that follows does not consider them.
//@@@ do we really need to save all the info1's
BU_Joint::Info1 *info = (BU_Joint::Info1*) alloca (nj*sizeof(BU_Joint::Info1));
for (i=0, j=0; j<nj; j++) { // i=dest, j=src
joint[j]->GetInfo1 (info+i);
dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m);
if (info[i].m > 0) {
joint[i] = joint[j];
i++;
}
}
nj = i;
// create the row offset array
int m = 0;
int *ofs = (int*) alloca (nj*sizeof(int));
for (i=0; i<nj; i++) {
ofs[i] = m;
m += info[i].m;
}
// if there are constraints, compute the constraint force
dRealAllocaArray (J,m*12);
int *jb = (int*) alloca (m*2*sizeof(int));
if (m > 0) {
// create a constraint equation right hand side vector `c', a constraint
// force mixing vector `cfm', and LCP low and high bound vectors, and an
// 'findex' vector.
dRealAllocaArray (c,m);
dRealAllocaArray (cfm,m);
dRealAllocaArray (lo,m);
dRealAllocaArray (hi,m);
int *findex = (int*) alloca (m*sizeof(int));
dSetZero1 (c,m);
dSetValue1 (cfm,m,global_cfm);
dSetValue1 (lo,m,-dInfinity);
dSetValue1 (hi,m, dInfinity);
for (i=0; i<m; i++) findex[i] = -1;
// get jacobian data from constraints. an m*12 matrix will be created
// to store the two jacobian blocks from each constraint. it has this
// format:
//
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 \ .
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }-- jacobian for joint 0, body 1 and body 2 (3 rows)
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 /
// l1 l1 l1 a1 a1 a1 l2 l2 l2 a2 a2 a2 }--- jacobian for joint 1, body 1 and body 2 (3 rows)
// etc...
//
// (lll) = linear jacobian data
// (aaa) = angular jacobian data
//
dSetZero1 (J,m*12);
BU_Joint::Info2 Jinfo;
Jinfo.rowskip = 12;
Jinfo.fps = stepsize1;
Jinfo.erp = global_erp;
for (i=0; i<nj; i++) {
Jinfo.J1l = J + ofs[i]*12;
Jinfo.J1a = Jinfo.J1l + 3;
Jinfo.J2l = Jinfo.J1l + 6;
Jinfo.J2a = Jinfo.J1l + 9;
Jinfo.c = c + ofs[i];
Jinfo.cfm = cfm + ofs[i];
Jinfo.lo = lo + ofs[i];
Jinfo.hi = hi + ofs[i];
Jinfo.findex = findex + ofs[i];
joint[i]->GetInfo2 (&Jinfo);
if (Jinfo.c[0] > solverInfo.m_maxErrorReduction)
Jinfo.c[0] = solverInfo.m_maxErrorReduction;
// adjust returned findex values for global index numbering
for (j=0; j<info[i].m; j++) {
if (findex[ofs[i] + j] >= 0)
findex[ofs[i] + j] += ofs[i];
}
}
// create an array of body numbers for each joint row
int *jb_ptr = jb;
for (i=0; i<nj; i++) {
int b1 = (joint[i]->node[0].body) ? (joint[i]->node[0].body->m_odeTag) : -1;
int b2 = (joint[i]->node[1].body) ? (joint[i]->node[1].body->m_odeTag) : -1;
for (j=0; j<info[i].m; j++) {
jb_ptr[0] = b1;
jb_ptr[1] = b2;
jb_ptr += 2;
}
}
dIASSERT (jb_ptr == jb+2*m);
// compute the right hand side `rhs'
dRealAllocaArray (tmp1,nb*6);
// put v/h + invM*fe into tmp1
for (i=0; i<nb; i++) {
btScalar body_invMass = body[i]->getInvMass();
for (j=0; j<3; j++)
tmp1[i*6+j] = body[i]->m_facc[j] * body_invMass + body[i]->getLinearVelocity()[j] * stepsize1;
dMULTIPLY0_331NEW (tmp1 + i*6 + 3,=,invI + i*12,body[i]->m_tacc);
for (j=0; j<3; j++)
tmp1[i*6+3+j] += body[i]->getAngularVelocity()[j] * stepsize1;
}
// put J*tmp1 into rhs
dRealAllocaArray (rhs,m);
multiply_J (m,J,jb,tmp1,rhs);
// complete rhs
for (i=0; i<m; i++) rhs[i] = c[i]*stepsize1 - rhs[i];
// scale CFM
for (i=0; i<m; i++)
cfm[i] *= stepsize1;
// load lambda from the value saved on the previous iteration
dRealAllocaArray (lambda,m);
#ifdef WARM_STARTING
dSetZero1 (lambda,m); //@@@ shouldn't be necessary
for (i=0; i<nj; i++) {
memcpy (lambda+ofs[i],joint[i]->lambda,info[i].m * sizeof(btScalar));
}
#endif
// solve the LCP problem and get lambda and invM*constraint_force
dRealAllocaArray (cforce,nb*6);
SOR_LCP (m,nb,J,jb,body,invI,lambda,cforce,rhs,lo,hi,cfm,findex,numIter,sOr);
#ifdef WARM_STARTING
// save lambda for the next iteration
//@@@ note that this doesn't work for contact joints yet, as they are
// recreated every iteration
for (i=0; i<nj; i++) {
memcpy (joint[i]->lambda,lambda+ofs[i],info[i].m * sizeof(btScalar));
}
#endif
// note that the SOR method overwrites rhs and J at this point, so
// they should not be used again.
// add stepsize * cforce to the body velocity
for (i=0; i<nb; i++) {
btVector3 linvel = body[i]->getLinearVelocity();
btVector3 angvel = body[i]->getAngularVelocity();
for (j=0; j<3; j++)
linvel[j] += solverInfo.m_timeStep* cforce[i*6+j];
for (j=0; j<3; j++)
angvel[j] += solverInfo.m_timeStep* cforce[i*6+3+j];
body[i]->setLinearVelocity(linvel);
body[i]->setAngularVelocity(angvel);
}
}
// compute the velocity update:
// add stepsize * invM * fe to the body velocity
for (i=0; i<nb; i++) {
btScalar body_invMass = body[i]->getInvMass();
btVector3 linvel = body[i]->getLinearVelocity();
btVector3 angvel = body[i]->getAngularVelocity();
for (j=0; j<3; j++)
{
linvel[j] += solverInfo.m_timeStep * body_invMass * body[i]->m_facc[j];
}
for (j=0; j<3; j++)
{
body[i]->m_tacc[j] *= solverInfo.m_timeStep;
}
dMULTIPLY0_331NEW(angvel,+=,invI + i*12,body[i]->m_tacc);
body[i]->setAngularVelocity(angvel);
}
}
#endif //USE_SOR_SOLVER