Files
bullet3/examples/ExtendedTutorials/NN3DWalkers.cpp
Benjamin Ellenberger 2bf17a7a81 Initial commit.
------------
Simplifying the walker generation code and making it more understandable

SQUASH THIS LATER.
2016-07-01 19:35:27 +02:00

435 lines
13 KiB
C++
Executable File

/*
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
Motor Demo
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "NN3DWalkers.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAlignedObjectArray.h"
class btBroadphaseInterface;
class btCollisionShape;
class btOverlappingPairCache;
class btCollisionDispatcher;
class btConstraintSolver;
struct btCollisionAlgorithmCreateFunc;
class btDefaultCollisionConfiguration;
#include "../CommonInterfaces/CommonRigidBodyBase.h"
//TODO: Maybe add pointworldToLocal and AxisWorldToLocal etc. to a helper class
class NN3DWalkers : public CommonRigidBodyBase
{
float m_Time;
float m_fCyclePeriod; // in milliseconds
float m_fMuscleStrength;
btAlignedObjectArray<class NNWalker*> m_walkers;
public:
NN3DWalkers(struct GUIHelperInterface* helper)
:CommonRigidBodyBase(helper),m_fCyclePeriod(0),m_Time(0),m_fMuscleStrength(0)
{
}
void initPhysics();
void exitPhysics();
virtual ~NN3DWalkers()
{
}
void spawnWalker(const btVector3& startOffset, bool bFixed);
virtual bool keyboardCallback(int key, int state);
void setMotorTargets(btScalar deltaTime);
void resetCamera()
{
float dist = 11;
float pitch = 52;
float yaw = 35;
float targetPos[3]={0,0.46,0};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
btVector3 getPointWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 &point);
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 &axis);
btVector3 getPointLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 &point);
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 &axis);
};
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif
#ifndef M_PI_4
#define M_PI_4 0.785398163397448309616
#endif
#ifndef M_PI_8
#define M_PI_8 0.5 * M_PI_4
#endif
// /LOCAL FUNCTIONS
#define NUM_LEGS 6
#define BODYPART_COUNT 2 * NUM_LEGS + 1
#define JOINT_COUNT BODYPART_COUNT - 1
class NNWalker
{
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_ownerWorld->addRigidBody(body);
return body;
}
public:
NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld (ownerWorld)
{
btVector3 vUp(0, 1, 0);
//
// Setup geometry
//
float rootBodyRadius = 0.25f;
float rootBodyHeight = 0.1f;
float legRadius = 0.1f;
float legLength = 0.45f;
float foreLegLength = 0.75f;
float foreLegRadius = 0.08f;
m_shapes[0] = new btCapsuleShape(btScalar(rootBodyRadius), btScalar(rootBodyHeight));
int i;
for ( i=0; i<NUM_LEGS; i++)
{
m_shapes[1 + 2*i] = new btCapsuleShape(btScalar(legRadius), btScalar(legLength)); // leg capsule
m_shapes[2 + 2*i] = new btCapsuleShape(btScalar(foreLegRadius), btScalar(foreLegLength)); // fore leg capsule
}
//
// Setup rigid bodies
//
float footHeight = 0.5;
btTransform bodyOffset; bodyOffset.setIdentity();
bodyOffset.setOrigin(positionOffset);
// root body
btVector3 localRootBodyPosition = btVector3(btScalar(0.), btScalar(footHeight), btScalar(0.)); // root body position in local reference frame
btTransform transform;
transform.setIdentity();
transform.setOrigin(localRootBodyPosition);
if (bFixed) // if fixed body
{
m_bodies[0] = localCreateRigidBody(btScalar(0.), bodyOffset*transform, m_shapes[0]);
} else
{
m_bodies[0] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[0]);
}
btHingeConstraint* hingeC;
//btConeTwistConstraint* coneC;
btTransform localA, localB, localC;
// legs
for ( i=0; i<NUM_LEGS; i++)
{
float footAngle = 2 * M_PI * i / NUM_LEGS; // legs are uniformly distributed around the root body
float footYUnitPosition = sin(footAngle); // y position of the leg on the unit circle
float footXUnitPosition = cos(footAngle); // x position of the leg on the unit circle
transform.setIdentity();
btVector3 legCOM = btVector3(btScalar(footXUnitPosition*(rootBodyRadius+0.5*legLength)), btScalar(footHeight), btScalar(footYUnitPosition*(rootBodyRadius+0.5*legLength)));
transform.setOrigin(legCOM);
// thigh
btVector3 legDirection = (legCOM - localRootBodyPosition).normalize();
btVector3 kneeAxis = legDirection.cross(vUp);
transform.setRotation(btQuaternion(kneeAxis, M_PI_2));
m_bodies[1+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[1+2*i]);
// shin
transform.setIdentity();
transform.setOrigin(btVector3(btScalar(footXUnitPosition*(rootBodyRadius+legLength)), btScalar(footHeight-0.5*foreLegLength), btScalar(footYUnitPosition*(rootBodyRadius+legLength))));
m_bodies[2+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[2+2*i]);
//
// Setup the constraints
//
// hip joints
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*rootBodyRadius), btScalar(0.), btScalar(footYUnitPosition*rootBodyRadius)));
localB = m_bodies[1+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB);
hingeC->setLimit(btScalar(-0.75 * M_PI_4), btScalar(M_PI_8));
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
m_joints[2*i] = hingeC;
m_ownerWorld->addConstraint(m_joints[2*i], true);
// knee joints
localA.setIdentity(); localB.setIdentity(); localC.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*(rootBodyRadius+legLength)), btScalar(0.), btScalar(footYUnitPosition*(rootBodyRadius+legLength))));
localB = m_bodies[1+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
localC = m_bodies[2+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC);
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
hingeC->setLimit(btScalar(-M_PI_8), btScalar(0.2));
m_joints[1+2*i] = hingeC;
m_ownerWorld->addConstraint(m_joints[1+2*i], true);
}
// Setup some damping on the m_bodies
for (i = 0; i < BODYPART_COUNT; ++i)
{
m_bodies[i]->setDamping(0.05, 0.85);
m_bodies[i]->setDeactivationTime(0.8);
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
}
}
virtual ~NNWalker ()
{
int i;
// Remove all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->removeConstraint(m_joints[i]);
delete m_joints[i]; m_joints[i] = 0;
}
// Remove all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->removeRigidBody(m_bodies[i]);
delete m_bodies[i]->getMotionState();
delete m_bodies[i]; m_bodies[i] = 0;
delete m_shapes[i]; m_shapes[i] = 0;
}
}
btTypedConstraint** GetJoints() {return &m_joints[0];}
};
void motorNNPreTickCallback (btDynamicsWorld *world, btScalar timeStep)
{
NN3DWalkers* motorDemo = (NN3DWalkers*)world->getWorldUserInfo();
motorDemo->setMotorTargets(timeStep);
}
void NN3DWalkers::initPhysics()
{
m_guiHelper->setUpAxis(1);
// Setup the basic world
m_Time = 0;
m_fCyclePeriod = 2000.f; // in milliseconds
// m_fMuscleStrength = 0.05f;
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
// should be (numberOfsolverIterations * oldLimits)
// currently solver uses 10 iterations, so:
m_fMuscleStrength = 0.5f;
createEmptyDynamicsWorld();
m_dynamicsWorld->setInternalTickCallback(motorNNPreTickCallback,this,true);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
// Setup a big ground box
{
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.)));
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-10,0));
createRigidBody(btScalar(0.),groundTransform,groundShape);
}
// Spawn one ragdoll
btVector3 startOffset(1,0.5,0);
spawnWalker(startOffset, false);
startOffset.setValue(-2,0.5,0);
spawnWalker(startOffset, true);
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void NN3DWalkers::spawnWalker(const btVector3& startOffset, bool bFixed)
{
NNWalker* walker = new NNWalker(m_dynamicsWorld, startOffset, bFixed);
m_walkers.push_back(walker);
}
//void PreStep()
//{
//
//}
void NN3DWalkers::setMotorTargets(btScalar deltaTime)
{
float ms = deltaTime*1000000.;
float minFPS = 1000000.f/60.f;
if (ms > minFPS)
ms = minFPS;
m_Time += ms;
//
// set per-frame sinusoidal position targets using angular motor (hacky?)
//
for (int r=0; r<m_walkers.size(); r++)
{
for (int i=0; i<2*NUM_LEGS; i++)
{
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkers[r]->GetJoints()[i]);
btScalar fCurAngle = hingeC->getHingeAngle();
btScalar fTargetPercent = (int(m_Time / 1000) % int(m_fCyclePeriod)) / m_fCyclePeriod;
btScalar fTargetAngle = 0.5 * (1 + sin(2 * M_PI * fTargetPercent));
btScalar fTargetLimitAngle = hingeC->getLowerLimit() + fTargetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
btScalar fAngleError = fTargetLimitAngle - fCurAngle;
btScalar fDesiredAngularVel = 1000000.f * fAngleError/ms;
hingeC->enableAngularMotor(true, fDesiredAngularVel, m_fMuscleStrength);
}
}
}
bool NN3DWalkers::keyboardCallback(int key, int state)
{
switch (key)
{
case '+': case '=':
m_fCyclePeriod /= 1.1f;
if (m_fCyclePeriod < 1.f)
m_fCyclePeriod = 1.f;
return true;
break;
case '-': case '_':
m_fCyclePeriod *= 1.1f;
return true;
break;
case '[':
m_fMuscleStrength /= 1.1f;
return true;
break;
case ']':
m_fMuscleStrength *= 1.1f;
return true;
break;
default:
break;
}
return false;
}
void NN3DWalkers::exitPhysics()
{
int i;
for (i=0;i<m_walkers.size();i++)
{
NNWalker* walker = m_walkers[i];
delete walker;
}
CommonRigidBodyBase::exitPhysics();
}
class CommonExampleInterface* NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
{
return new NN3DWalkers(options.m_guiHelper);
}
btVector3 NN3DWalkers::getPointWorldToLocal( btTransform localObjectCenterOfMassTransform, btVector3 &point) {
return localObjectCenterOfMassTransform.inverse() * point; // transforms the point from the world frame into the local frame
}
btVector3 NN3DWalkers::getPointLocalToWorld( btTransform localObjectCenterOfMassTransform, btVector3 &point) {
return localObjectCenterOfMassTransform * point; // transforms the point from the world frame into the local frame
}
btVector3 NN3DWalkers::getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 &axis) {
btTransform local1 = localObjectCenterOfMassTransform.inverse(); // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
}
btVector3 NN3DWalkers::getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 &axis) {
btTransform local1 = localObjectCenterOfMassTransform; // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
}