Files
bullet3/examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMatrix.h
erwincoumans ae8e83988b Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
2019-01-22 21:08:37 -08:00

1404 lines
51 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class SparseMatrix
*
* \brief A versatible sparse matrix representation
*
* This class implements a more versatile variants of the common \em compressed row/column storage format.
* Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
* All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
* space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
* can be done with limited memory reallocation and copies.
*
* A call to the function makeCompressed() turns the matrix into the standard \em compressed format
* compatible with many library.
*
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
*
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
* is ColMajor or RowMajor. The default is 0 which means column-major.
* \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
*
* \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
* whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
* Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
*/
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef _StorageIndex StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = 1,
Flags = LvalueBit
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
: public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
enum {
Flags = 0
};
};
} // end namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex>
class SparseMatrix
: public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
typedef SparseCompressedBase<SparseMatrix> Base;
using Base::convert_index;
friend class SparseVector<_Scalar,0,_StorageIndex>;
public:
using Base::isCompressed;
using Base::nonZeros;
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
using Base::operator+=;
using Base::operator-=;
typedef MappedSparseMatrix<Scalar,Flags> Map;
typedef Diagonal<SparseMatrix> DiagonalReturnType;
typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
typedef typename Base::InnerIterator InnerIterator;
typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
using Base::IsRowMajor;
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
enum {
Options = _Options
};
typedef typename Base::IndexVector IndexVector;
typedef typename Base::ScalarVector ScalarVector;
protected:
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
Index m_outerSize;
Index m_innerSize;
StorageIndex* m_outerIndex;
StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed
Storage m_data;
public:
/** \returns the number of rows of the matrix */
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
/** \returns the number of columns of the matrix */
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
/** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
inline Index innerSize() const { return m_innerSize; }
/** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
inline Index outerSize() const { return m_outerSize; }
/** \returns a const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
/** \returns a non-const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline Scalar* valuePtr() { return m_data.valuePtr(); }
/** \returns a const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
/** \returns a non-const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
/** \returns a const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), innerIndexPtr() */
inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), innerIndexPtr() */
inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
/** \internal */
inline Storage& data() { return m_data; }
/** \internal */
inline const Storage& data() const { return m_data; }
/** \returns the value of the matrix at position \a i, \a j
* This function returns Scalar(0) if the element is an explicit \em zero */
inline Scalar coeff(Index row, Index col) const
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
}
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
*
* If the element does not exist then it is inserted via the insert(Index,Index) function
* which itself turns the matrix into a non compressed form if that was not the case.
*
* This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
* function if the element does not already exist.
*/
inline Scalar& coeffRef(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
if(end<=start)
return insert(row,col);
const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
if((p<end) && (m_data.index(p)==inner))
return m_data.value(p);
else
return insert(row,col);
}
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
* The non zero coefficient must \b not already exist.
*
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
* mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
* In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
* inserted by increasing outer-indices.
*
* If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
* call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
*
* Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
* if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
*
*/
Scalar& insert(Index row, Index col);
public:
/** Removes all non zeros but keep allocated memory
*
* This function does not free the currently allocated memory. To release as much as memory as possible,
* call \code mat.data().squeeze(); \endcode after resizing it.
*
* \sa resize(Index,Index), data()
*/
inline void setZero()
{
m_data.clear();
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
if(m_innerNonZeros)
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
}
/** Preallocates \a reserveSize non zeros.
*
* Precondition: the matrix must be in compressed mode. */
inline void reserve(Index reserveSize)
{
eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
m_data.reserve(reserveSize);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
*
* This function turns the matrix in non-compressed mode.
*
* The type \c SizesType must expose the following interface:
\code
typedef value_type;
const value_type& operator[](i) const;
\endcode
* for \c i in the [0,this->outerSize()[ range.
* Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
*/
template<class SizesType>
inline void reserve(const SizesType& reserveSizes);
#else
template<class SizesType>
inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
#if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
typename
#endif
SizesType::value_type())
{
EIGEN_UNUSED_VARIABLE(enableif);
reserveInnerVectors(reserveSizes);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
template<class SizesType>
inline void reserveInnerVectors(const SizesType& reserveSizes)
{
if(isCompressed())
{
Index totalReserveSize = 0;
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
// temporarily use m_innerSizes to hold the new starting points.
StorageIndex* newOuterIndex = m_innerNonZeros;
StorageIndex count = 0;
for(Index j=0; j<m_outerSize; ++j)
{
newOuterIndex[j] = count;
count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
totalReserveSize += reserveSizes[j];
}
m_data.reserve(totalReserveSize);
StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
for(Index j=m_outerSize-1; j>=0; --j)
{
StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
for(Index i=innerNNZ-1; i>=0; --i)
{
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
}
previousOuterIndex = m_outerIndex[j];
m_outerIndex[j] = newOuterIndex[j];
m_innerNonZeros[j] = innerNNZ;
}
m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
m_data.resize(m_outerIndex[m_outerSize]);
}
else
{
StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
if (!newOuterIndex) internal::throw_std_bad_alloc();
StorageIndex count = 0;
for(Index j=0; j<m_outerSize; ++j)
{
newOuterIndex[j] = count;
StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
count += toReserve + m_innerNonZeros[j];
}
newOuterIndex[m_outerSize] = count;
m_data.resize(count);
for(Index j=m_outerSize-1; j>=0; --j)
{
Index offset = newOuterIndex[j] - m_outerIndex[j];
if(offset>0)
{
StorageIndex innerNNZ = m_innerNonZeros[j];
for(Index i=innerNNZ-1; i>=0; --i)
{
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
}
}
}
std::swap(m_outerIndex, newOuterIndex);
std::free(newOuterIndex);
}
}
public:
//--- low level purely coherent filling ---
/** \internal
* \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
* - the nonzero does not already exist
* - the new coefficient is the last one according to the storage order
*
* Before filling a given inner vector you must call the statVec(Index) function.
*
* After an insertion session, you should call the finalize() function.
*
* \sa insert, insertBackByOuterInner, startVec */
inline Scalar& insertBack(Index row, Index col)
{
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
}
/** \internal
* \sa insertBack, startVec */
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
{
eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
Index p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(Scalar(0), inner);
return m_data.value(p);
}
/** \internal
* \warning use it only if you know what you are doing */
inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
{
Index p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(Scalar(0), inner);
return m_data.value(p);
}
/** \internal
* \sa insertBack, insertBackByOuterInner */
inline void startVec(Index outer)
{
eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
m_outerIndex[outer+1] = m_outerIndex[outer];
}
/** \internal
* Must be called after inserting a set of non zero entries using the low level compressed API.
*/
inline void finalize()
{
if(isCompressed())
{
StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
Index i = m_outerSize;
// find the last filled column
while (i>=0 && m_outerIndex[i]==0)
--i;
++i;
while (i<=m_outerSize)
{
m_outerIndex[i] = size;
++i;
}
}
}
//---
template<typename InputIterators>
void setFromTriplets(const InputIterators& begin, const InputIterators& end);
template<typename InputIterators,typename DupFunctor>
void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);
void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }
template<typename DupFunctor>
void collapseDuplicates(DupFunctor dup_func = DupFunctor());
//---
/** \internal
* same as insert(Index,Index) except that the indices are given relative to the storage order */
Scalar& insertByOuterInner(Index j, Index i)
{
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
}
/** Turns the matrix into the \em compressed format.
*/
void makeCompressed()
{
if(isCompressed())
return;
eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
Index oldStart = m_outerIndex[1];
m_outerIndex[1] = m_innerNonZeros[0];
for(Index j=1; j<m_outerSize; ++j)
{
Index nextOldStart = m_outerIndex[j+1];
Index offset = oldStart - m_outerIndex[j];
if(offset>0)
{
for(Index k=0; k<m_innerNonZeros[j]; ++k)
{
m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
}
}
m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
oldStart = nextOldStart;
}
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
m_data.resize(m_outerIndex[m_outerSize]);
m_data.squeeze();
}
/** Turns the matrix into the uncompressed mode */
void uncompress()
{
if(m_innerNonZeros != 0)
return;
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
for (Index i = 0; i < m_outerSize; i++)
{
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
}
}
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
{
prune(default_prunning_func(reference,epsilon));
}
/** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
* The functor type \a KeepFunc must implement the following function:
* \code
* bool operator() (const Index& row, const Index& col, const Scalar& value) const;
* \endcode
* \sa prune(Scalar,RealScalar)
*/
template<typename KeepFunc>
void prune(const KeepFunc& keep = KeepFunc())
{
// TODO optimize the uncompressed mode to avoid moving and allocating the data twice
makeCompressed();
StorageIndex k = 0;
for(Index j=0; j<m_outerSize; ++j)
{
Index previousStart = m_outerIndex[j];
m_outerIndex[j] = k;
Index end = m_outerIndex[j+1];
for(Index i=previousStart; i<end; ++i)
{
if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
{
m_data.value(k) = m_data.value(i);
m_data.index(k) = m_data.index(i);
++k;
}
}
}
m_outerIndex[m_outerSize] = k;
m_data.resize(k,0);
}
/** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
*
* If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
* and the storage of the out of bounds coefficients is kept and reserved.
* Call makeCompressed() to pack the entries and squeeze extra memory.
*
* \sa reserve(), setZero(), makeCompressed()
*/
void conservativeResize(Index rows, Index cols)
{
// No change
if (this->rows() == rows && this->cols() == cols) return;
// If one dimension is null, then there is nothing to be preserved
if(rows==0 || cols==0) return resize(rows,cols);
Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
// Deals with inner non zeros
if (m_innerNonZeros)
{
// Resize m_innerNonZeros
StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
if (!newInnerNonZeros) internal::throw_std_bad_alloc();
m_innerNonZeros = newInnerNonZeros;
for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
m_innerNonZeros[i] = 0;
}
else if (innerChange < 0)
{
// Inner size decreased: allocate a new m_innerNonZeros
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
for(Index i = 0; i < m_outerSize; i++)
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
}
// Change the m_innerNonZeros in case of a decrease of inner size
if (m_innerNonZeros && innerChange < 0)
{
for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
{
StorageIndex &n = m_innerNonZeros[i];
StorageIndex start = m_outerIndex[i];
while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
}
}
m_innerSize = newInnerSize;
// Re-allocate outer index structure if necessary
if (outerChange == 0)
return;
StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
if (!newOuterIndex) internal::throw_std_bad_alloc();
m_outerIndex = newOuterIndex;
if (outerChange > 0)
{
StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
m_outerIndex[i] = last;
}
m_outerSize += outerChange;
}
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
*
* This function does not free the currently allocated memory. To release as much as memory as possible,
* call \code mat.data().squeeze(); \endcode after resizing it.
*
* \sa reserve(), setZero()
*/
void resize(Index rows, Index cols)
{
const Index outerSize = IsRowMajor ? rows : cols;
m_innerSize = IsRowMajor ? cols : rows;
m_data.clear();
if (m_outerSize != outerSize || m_outerSize==0)
{
std::free(m_outerIndex);
m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
if (!m_outerIndex) internal::throw_std_bad_alloc();
m_outerSize = outerSize;
}
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
}
/** \internal
* Resize the nonzero vector to \a size */
void resizeNonZeros(Index size)
{
m_data.resize(size);
}
/** \returns a const expression of the diagonal coefficients. */
const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
/** \returns a read-write expression of the diagonal coefficients.
* \warning If the diagonal entries are written, then all diagonal
* entries \b must already exist, otherwise an assertion will be raised.
*/
DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
/** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
inline SparseMatrix()
: m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
resize(0, 0);
}
/** Constructs a \a rows \c x \a cols empty matrix */
inline SparseMatrix(Index rows, Index cols)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
resize(rows, cols);
}
/** Constructs a sparse matrix from the sparse expression \a other */
template<typename OtherDerived>
inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
check_template_parameters();
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
if (needToTranspose)
*this = other.derived();
else
{
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
internal::call_assignment_no_alias(*this, other.derived());
}
}
/** Constructs a sparse matrix from the sparse selfadjoint view \a other */
template<typename OtherDerived, unsigned int UpLo>
inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
Base::operator=(other);
}
/** Copy constructor (it performs a deep copy) */
inline SparseMatrix(const SparseMatrix& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
*this = other.derived();
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
SparseMatrix(const ReturnByValue<OtherDerived>& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
initAssignment(other);
other.evalTo(*this);
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
*this = other.derived();
}
/** Swaps the content of two sparse matrices of the same type.
* This is a fast operation that simply swaps the underlying pointers and parameters. */
inline void swap(SparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_outerIndex, other.m_outerIndex);
std::swap(m_innerSize, other.m_innerSize);
std::swap(m_outerSize, other.m_outerSize);
std::swap(m_innerNonZeros, other.m_innerNonZeros);
m_data.swap(other.m_data);
}
/** Sets *this to the identity matrix.
* This function also turns the matrix into compressed mode, and drop any reserved memory. */
inline void setIdentity()
{
eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
this->m_data.resize(rows());
Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else if(this!=&other)
{
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
initAssignment(other);
if(other.isCompressed())
{
internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
m_data = other.m_data;
}
else
{
Base::operator=(other);
}
}
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
{ return Base::operator=(other.derived()); }
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
{
EIGEN_DBG_SPARSE(
s << "Nonzero entries:\n";
if(m.isCompressed())
{
for (Index i=0; i<m.nonZeros(); ++i)
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
}
else
{
for (Index i=0; i<m.outerSize(); ++i)
{
Index p = m.m_outerIndex[i];
Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
Index k=p;
for (; k<pe; ++k) {
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
}
for (; k<m.m_outerIndex[i+1]; ++k) {
s << "(_,_) ";
}
}
}
s << std::endl;
s << std::endl;
s << "Outer pointers:\n";
for (Index i=0; i<m.outerSize(); ++i) {
s << m.m_outerIndex[i] << " ";
}
s << " $" << std::endl;
if(!m.isCompressed())
{
s << "Inner non zeros:\n";
for (Index i=0; i<m.outerSize(); ++i) {
s << m.m_innerNonZeros[i] << " ";
}
s << " $" << std::endl;
}
s << std::endl;
);
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
return s;
}
/** Destructor */
inline ~SparseMatrix()
{
std::free(m_outerIndex);
std::free(m_innerNonZeros);
}
/** Overloaded for performance */
Scalar sum() const;
# ifdef EIGEN_SPARSEMATRIX_PLUGIN
# include EIGEN_SPARSEMATRIX_PLUGIN
# endif
protected:
template<typename Other>
void initAssignment(const Other& other)
{
resize(other.rows(), other.cols());
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
}
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
/** \internal
* A vector object that is equal to 0 everywhere but v at the position i */
class SingletonVector
{
StorageIndex m_index;
StorageIndex m_value;
public:
typedef StorageIndex value_type;
SingletonVector(Index i, Index v)
: m_index(convert_index(i)), m_value(convert_index(v))
{}
StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
};
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
public:
/** \internal
* \sa insert(Index,Index) */
EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
eigen_assert(!isCompressed());
eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
m_data.index(p) = convert_index(inner);
return (m_data.value(p) = 0);
}
private:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
}
struct default_prunning_func {
default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
inline bool operator() (const Index&, const Index&, const Scalar& value) const
{
return !internal::isMuchSmallerThan(value, reference, epsilon);
}
Scalar reference;
RealScalar epsilon;
};
};
namespace internal {
template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
{
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::StorageIndex StorageIndex;
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
if(begin!=end)
{
// pass 1: count the nnz per inner-vector
typename SparseMatrixType::IndexVector wi(trMat.outerSize());
wi.setZero();
for(InputIterator it(begin); it!=end; ++it)
{
eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
wi(IsRowMajor ? it->col() : it->row())++;
}
// pass 2: insert all the elements into trMat
trMat.reserve(wi);
for(InputIterator it(begin); it!=end; ++it)
trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
// pass 3:
trMat.collapseDuplicates(dup_func);
}
// pass 4: transposed copy -> implicit sorting
mat = trMat;
}
}
/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
*
* A \em triplet is a tuple (i,j,value) defining a non-zero element.
* The input list of triplets does not have to be sorted, and can contains duplicated elements.
* In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
* This is a \em O(n) operation, with \em n the number of triplet elements.
* The initial contents of \c *this is destroyed.
* The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
* or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
*
* The \a InputIterators value_type must provide the following interface:
* \code
* Scalar value() const; // the value
* Scalar row() const; // the row index i
* Scalar col() const; // the column index j
* \endcode
* See for instance the Eigen::Triplet template class.
*
* Here is a typical usage example:
* \code
typedef Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries);
for(...)
{
// ...
tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType m(rows,cols);
m.setFromTriplets(tripletList.begin(), tripletList.end());
// m is ready to go!
* \endcode
*
* \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
* an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
* be explicitely stored into a std::vector for instance.
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
}
/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
* \code
* value = dup_func(OldValue, NewValue)
* \endcode
* Here is a C++11 example keeping the latest entry only:
* \code
* mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
* \endcode
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators,typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
}
/** \internal */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
{
eigen_assert(!isCompressed());
// TODO, in practice we should be able to use m_innerNonZeros for that task
IndexVector wi(innerSize());
wi.fill(-1);
StorageIndex count = 0;
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
for(Index j=0; j<outerSize(); ++j)
{
StorageIndex start = count;
Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
{
Index i = m_data.index(k);
if(wi(i)>=start)
{
// we already meet this entry => accumulate it
m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
}
else
{
m_data.value(count) = m_data.value(k);
m_data.index(count) = m_data.index(k);
wi(i) = count;
++count;
}
}
m_outerIndex[j] = start;
}
m_outerIndex[m_outerSize] = count;
// turn the matrix into compressed form
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
m_data.resize(m_outerIndex[m_outerSize]);
}
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
if (needToTranspose)
{
#ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
#endif
// two passes algorithm:
// 1 - compute the number of coeffs per dest inner vector
// 2 - do the actual copy/eval
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
typedef internal::evaluator<_OtherCopy> OtherCopyEval;
OtherCopy otherCopy(other.derived());
OtherCopyEval otherCopyEval(otherCopy);
SparseMatrix dest(other.rows(),other.cols());
Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
// pass 1
// FIXME the above copy could be merged with that pass
for (Index j=0; j<otherCopy.outerSize(); ++j)
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
++dest.m_outerIndex[it.index()];
// prefix sum
StorageIndex count = 0;
IndexVector positions(dest.outerSize());
for (Index j=0; j<dest.outerSize(); ++j)
{
StorageIndex tmp = dest.m_outerIndex[j];
dest.m_outerIndex[j] = count;
positions[j] = count;
count += tmp;
}
dest.m_outerIndex[dest.outerSize()] = count;
// alloc
dest.m_data.resize(count);
// pass 2
for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
{
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
{
Index pos = positions[it.index()]++;
dest.m_data.index(pos) = j;
dest.m_data.value(pos) = it.value();
}
}
this->swap(dest);
return *this;
}
else
{
if(other.isRValue())
{
initAssignment(other.derived());
}
// there is no special optimization
return Base::operator=(other.derived());
}
}
template<typename _Scalar, int _Options, typename _StorageIndex>
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
if(isCompressed())
{
if(nonZeros()==0)
{
// reserve space if not already done
if(m_data.allocatedSize()==0)
m_data.reserve(2*m_innerSize);
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
// pack all inner-vectors to the end of the pre-allocated space
// and allocate the entire free-space to the first inner-vector
StorageIndex end = convert_index(m_data.allocatedSize());
for(Index j=1; j<=m_outerSize; ++j)
m_outerIndex[j] = end;
}
else
{
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
for(Index j=0; j<m_outerSize; ++j)
m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
}
}
// check whether we can do a fast "push back" insertion
Index data_end = m_data.allocatedSize();
// First case: we are filling a new inner vector which is packed at the end.
// We assume that all remaining inner-vectors are also empty and packed to the end.
if(m_outerIndex[outer]==data_end)
{
eigen_internal_assert(m_innerNonZeros[outer]==0);
// pack previous empty inner-vectors to end of the used-space
// and allocate the entire free-space to the current inner-vector.
StorageIndex p = convert_index(m_data.size());
Index j = outer;
while(j>=0 && m_innerNonZeros[j]==0)
m_outerIndex[j--] = p;
// push back the new element
++m_innerNonZeros[outer];
m_data.append(Scalar(0), inner);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index k=outer+1; k<=m_outerSize; ++k)
if(m_outerIndex[k]==data_end)
m_outerIndex[k] = new_end;
}
return m_data.value(p);
}
// Second case: the next inner-vector is packed to the end
// and the current inner-vector end match the used-space.
if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
{
eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
// add space for the new element
++m_innerNonZeros[outer];
m_data.resize(m_data.size()+1);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index k=outer+1; k<=m_outerSize; ++k)
if(m_outerIndex[k]==data_end)
m_outerIndex[k] = new_end;
}
// and insert it at the right position (sorted insertion)
Index startId = m_outerIndex[outer];
Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = convert_index(inner);
return (m_data.value(p) = 0);
}
if(m_data.size() != m_data.allocatedSize())
{
// make sure the matrix is compatible to random un-compressed insertion:
m_data.resize(m_data.allocatedSize());
this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
}
return insertUncompressed(row,col);
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
{
eigen_assert(!isCompressed());
const Index outer = IsRowMajor ? row : col;
const StorageIndex inner = convert_index(IsRowMajor ? col : row);
Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
StorageIndex innerNNZ = m_innerNonZeros[outer];
if(innerNNZ>=room)
{
// this inner vector is full, we need to reallocate the whole buffer :(
reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
}
Index startId = m_outerIndex[outer];
Index p = startId + m_innerNonZeros[outer];
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
m_innerNonZeros[outer]++;
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
{
eigen_assert(isCompressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index previousOuter = outer;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
{
m_outerIndex[previousOuter] = convert_index(m_data.size());
--previousOuter;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
// here we have to handle the tricky case where the outerIndex array
// starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
// the 2nd inner vector...
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
&& (std::size_t(m_outerIndex[outer+1]) == m_data.size());
std::size_t startId = m_outerIndex[outer];
// FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
std::size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
double reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
if (m_data.size()==0)
{
m_data.reserve(32);
}
else
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use double to avoid integers overflows
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
if (!isLastVec)
{
if (previousOuter==-1)
{
// oops wrong guess.
// let's correct the outer offsets
for (Index k=0; k<=(outer+1); ++k)
m_outerIndex[k] = 0;
Index k=outer+1;
while(m_outerIndex[k]==0)
m_outerIndex[k++] = 1;
while (k<=m_outerSize && m_outerIndex[k]!=0)
m_outerIndex[k++]++;
p = 0;
--k;
k = m_outerIndex[k]-1;
while (k>0)
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
else
{
// we are not inserting into the last inner vec
// update outer indices:
Index j = outer+2;
while (j<=m_outerSize && m_outerIndex[j]!=0)
m_outerIndex[j++]++;
--j;
// shift data of last vecs:
Index k = m_outerIndex[j]-1;
while (k>=Index(p))
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
}
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
: evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
{
typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
evaluator() : Base() {}
explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
};
}
} // end namespace Eigen
#endif // EIGEN_SPARSEMATRIX_H