Files
bullet3/src/BulletInverseDynamics/IDMath.cpp
Erwin Coumans ba8964c4ac [InverseDynamics] Support for Jacobians & derivatives
This change adds support for calculating Jacobians and
dot(Jacobian)*u terms, along with the required support for
the 3xN matrices in the standalone math library.
It also adds functions to compute kinematics only (position, velocity, accel).
To facilitate tests, the Cl also adds a RandomTreeCreator to create
randomized multibody trees.
Thanks to Thomas Buschmann for this contribution!
2016-08-25 16:24:28 -07:00

426 lines
12 KiB
C++

#include "IDMath.hpp"
#include <cmath>
#include <limits>
namespace btInverseDynamics {
static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon();
// requirements for axis length deviation from 1.0
// experimentally set from random euler angle rotation matrices
static const idScalar kAxisLengthEpsilon = 10 * kIsZero;
void setZero(vec3 &v) {
v(0) = 0;
v(1) = 0;
v(2) = 0;
}
void setZero(vecx &v) {
for (int i = 0; i < v.size(); i++) {
v(i) = 0;
}
}
void setZero(mat33 &m) {
m(0, 0) = 0;
m(0, 1) = 0;
m(0, 2) = 0;
m(1, 0) = 0;
m(1, 1) = 0;
m(1, 2) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 0;
}
idScalar maxAbs(const vecx &v) {
idScalar result = 0.0;
for (int i = 0; i < v.size(); i++) {
const idScalar tmp = std::fabs(v(i));
if (tmp > result) {
result = tmp;
}
}
return result;
}
idScalar maxAbs(const vec3 &v) {
idScalar result = 0.0;
for (int i = 0; i < 3; i++) {
const idScalar tmp = std::fabs(v(i));
if (tmp > result) {
result = tmp;
}
}
return result;
}
#if (defined BT_ID_HAVE_MAT3X)
idScalar maxAbsMat3x(const mat3x &m) {
// only used for tests -- so just loop here for portability
idScalar result = 0.0;
for (idArrayIdx col = 0; col < m.cols(); col++) {
for (idArrayIdx row = 0; row < 3; row++) {
result = BT_ID_MAX(result, std::fabs(m(row, col)));
}
}
return result;
}
void mul(const mat33 &a, const mat3x &b, mat3x *result) {
if (b.cols() != result->cols()) {
error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
static_cast<int>(b.cols()), static_cast<int>(result->cols()));
abort();
}
for (idArrayIdx col = 0; col < b.cols(); col++) {
const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col);
const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col);
const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col);
setMat3xElem(0, col, x, result);
setMat3xElem(1, col, y, result);
setMat3xElem(2, col, z, result);
}
}
void add(const mat3x &a, const mat3x &b, mat3x *result) {
if (a.cols() != b.cols()) {
error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
static_cast<int>(a.cols()), static_cast<int>(b.cols()));
abort();
}
for (idArrayIdx col = 0; col < b.cols(); col++) {
for (idArrayIdx row = 0; row < 3; row++) {
setMat3xElem(row, col, a(row, col) + b(row, col), result);
}
}
}
void sub(const mat3x &a, const mat3x &b, mat3x *result) {
if (a.cols() != b.cols()) {
error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
static_cast<int>(a.cols()), static_cast<int>(b.cols()));
abort();
}
for (idArrayIdx col = 0; col < b.cols(); col++) {
for (idArrayIdx row = 0; row < 3; row++) {
setMat3xElem(row, col, a(row, col) - b(row, col), result);
}
}
}
#endif
mat33 transformX(const idScalar &alpha) {
mat33 T;
const idScalar cos_alpha = std::cos(alpha);
const idScalar sin_alpha = std::sin(alpha);
// [1 0 0]
// [0 c s]
// [0 -s c]
T(0, 0) = 1.0;
T(0, 1) = 0.0;
T(0, 2) = 0.0;
T(1, 0) = 0.0;
T(1, 1) = cos_alpha;
T(1, 2) = sin_alpha;
T(2, 0) = 0.0;
T(2, 1) = -sin_alpha;
T(2, 2) = cos_alpha;
return T;
}
mat33 transformY(const idScalar &beta) {
mat33 T;
const idScalar cos_beta = std::cos(beta);
const idScalar sin_beta = std::sin(beta);
// [c 0 -s]
// [0 1 0]
// [s 0 c]
T(0, 0) = cos_beta;
T(0, 1) = 0.0;
T(0, 2) = -sin_beta;
T(1, 0) = 0.0;
T(1, 1) = 1.0;
T(1, 2) = 0.0;
T(2, 0) = sin_beta;
T(2, 1) = 0.0;
T(2, 2) = cos_beta;
return T;
}
mat33 transformZ(const idScalar &gamma) {
mat33 T;
const idScalar cos_gamma = std::cos(gamma);
const idScalar sin_gamma = std::sin(gamma);
// [ c s 0]
// [-s c 0]
// [ 0 0 1]
T(0, 0) = cos_gamma;
T(0, 1) = sin_gamma;
T(0, 2) = 0.0;
T(1, 0) = -sin_gamma;
T(1, 1) = cos_gamma;
T(1, 2) = 0.0;
T(2, 0) = 0.0;
T(2, 1) = 0.0;
T(2, 2) = 1.0;
return T;
}
mat33 tildeOperator(const vec3 &v) {
mat33 m;
m(0, 0) = 0.0;
m(0, 1) = -v(2);
m(0, 2) = v(1);
m(1, 0) = v(2);
m(1, 1) = 0.0;
m(1, 2) = -v(0);
m(2, 0) = -v(1);
m(2, 1) = v(0);
m(2, 2) = 0.0;
return m;
}
void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) {
const idScalar sa = std::sin(alpha);
const idScalar ca = std::cos(alpha);
const idScalar st = std::sin(theta);
const idScalar ct = std::cos(theta);
(*r)(0) = a;
(*r)(1) = -sa * d;
(*r)(2) = ca * d;
(*T)(0, 0) = ct;
(*T)(0, 1) = -st;
(*T)(0, 2) = 0.0;
(*T)(1, 0) = st * ca;
(*T)(1, 1) = ct * ca;
(*T)(1, 2) = -sa;
(*T)(2, 0) = st * sa;
(*T)(2, 1) = ct * sa;
(*T)(2, 2) = ca;
}
void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) {
const idScalar c = cos(angle);
const idScalar s = -sin(angle);
const idScalar one_m_c = 1.0 - c;
const idScalar &x = axis(0);
const idScalar &y = axis(1);
const idScalar &z = axis(2);
(*T)(0, 0) = x * x * one_m_c + c;
(*T)(0, 1) = x * y * one_m_c - z * s;
(*T)(0, 2) = x * z * one_m_c + y * s;
(*T)(1, 0) = x * y * one_m_c + z * s;
(*T)(1, 1) = y * y * one_m_c + c;
(*T)(1, 2) = y * z * one_m_c - x * s;
(*T)(2, 0) = x * z * one_m_c - y * s;
(*T)(2, 1) = y * z * one_m_c + x * s;
(*T)(2, 2) = z * z * one_m_c + c;
}
bool isPositiveDefinite(const mat33 &m) {
// test if all upper left determinants are positive
if (m(0, 0) <= 0) { // upper 1x1
return false;
}
if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
return false;
}
return true;
}
bool isPositiveSemiDefinite(const mat33 &m) {
// test if all upper left determinants are positive
if (m(0, 0) < 0) { // upper 1x1
return false;
}
if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
return false;
}
return true;
}
bool isPositiveSemiDefiniteFuzzy(const mat33 &m) {
// test if all upper left determinants are positive
if (m(0, 0) < -kIsZero) { // upper 1x1
return false;
}
if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) {
return false;
}
return true;
}
idScalar determinant(const mat33 &m) {
return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) -
m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2);
}
bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) {
// TODO(Thomas) do we really want this?
// in cases where the inertia tensor about the center of mass is zero,
// the determinant of the inertia tensor about the joint axis is almost
// zero and can have a very small negative value.
if (!isPositiveSemiDefiniteFuzzy(I)) {
error_message("invalid inertia matrix for body %d, not positive definite "
"(fixed joint)\n",
index);
error_message("matrix is:\n"
"[%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e]\n",
I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
I(2, 2));
return false;
}
// check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k)
if (!has_fixed_joint) {
if (I(0, 0) + I(1, 1) < I(2, 2)) {
error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
error_message("matrix is:\n"
"[%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e]\n",
I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
I(2, 2));
return false;
}
if (I(0, 0) + I(1, 1) < I(2, 2)) {
error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
error_message("matrix is:\n"
"[%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e]\n",
I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
I(2, 2));
return false;
}
if (I(1, 1) + I(2, 2) < I(0, 0)) {
error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index);
error_message("matrix is:\n"
"[%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e;\n"
"%.20e %.20e %.20e]\n",
I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
I(2, 2));
return false;
}
}
// check positive/zero diagonal elements
for (int i = 0; i < 3; i++) {
if (I(i, i) < 0) { // accept zero
error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i));
return false;
}
}
// check symmetry
if (std::fabs(I(1, 0) - I(0, 1)) > kIsZero) {
error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= "
"%e\n",
index, I(1, 0) - I(0, 1));
return false;
}
if (std::fabs(I(2, 0) - I(0, 2)) > kIsZero) {
error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= "
"%e\n",
index, I(2, 0) - I(0, 2));
return false;
}
if (std::fabs(I(1, 2) - I(2, 1)) > kIsZero) {
error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index,
I(1, 2) - I(2, 1));
return false;
}
return true;
}
bool isValidTransformMatrix(const mat33 &m) {
#define print_mat(x) \
error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \
x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2))
// check for unit length column vectors
for (int i = 0; i < 3; i++) {
const idScalar length_minus_1 =
std::fabs(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0);
if (length_minus_1 > kAxisLengthEpsilon) {
error_message("Not a valid rotation matrix (column %d not unit length)\n"
"column = [%.18e %.18e %.18e]\n"
"length-1.0= %.18e\n",
i, m(0, i), m(1, i), m(2, i), length_minus_1);
print_mat(m);
return false;
}
}
// check for orthogonal column vectors
if (std::fabs(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) {
error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n");
print_mat(m);
return false;
}
if (std::fabs(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) {
error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
print_mat(m);
return false;
}
if (std::fabs(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) {
error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
print_mat(m);
return false;
}
// check determinant (rotation not reflection)
if (determinant(m) <= 0) {
error_message("Not a valid rotation matrix (determinant <=0)\n");
print_mat(m);
return false;
}
return true;
}
bool isUnitVector(const vec3 &vector) {
return std::fabs(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) <
kIsZero;
}
vec3 rpyFromMatrix(const mat33 &rot) {
vec3 rpy;
rpy(2) = std::atan2(-rot(1, 0), rot(0, 0));
rpy(1) = std::atan2(rot(2, 0), std::cos(rpy(2)) * rot(0, 0) - std::sin(rpy(0)) * rot(1, 0));
rpy(0) = std::atan2(-rot(2, 0), rot(2, 2));
return rpy;
}
}