Files
bullet3/examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseAssign.h
erwincoumans ae8e83988b Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
2019-01-22 21:08:37 -08:00

217 lines
8.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEASSIGN_H
#define EIGEN_SPARSEASSIGN_H
namespace Eigen {
template<typename Derived>
template<typename OtherDerived>
Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
internal::call_assignment_no_alias(derived(), other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
// TODO use the evaluator mechanism
other.evalTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
// by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine
internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> >
::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
template<typename Derived>
inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other)
{
internal::call_assignment_no_alias(derived(), other.derived());
return derived();
}
namespace internal {
template<>
struct storage_kind_to_evaluator_kind<Sparse> {
typedef IteratorBased Kind;
};
template<>
struct storage_kind_to_shape<Sparse> {
typedef SparseShape Shape;
};
struct Sparse2Sparse {};
struct Sparse2Dense {};
template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; };
template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; };
template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; };
template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; };
template<typename DstXprType, typename SrcXprType>
void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
{
typedef typename DstXprType::Scalar Scalar;
typedef internal::evaluator<DstXprType> DstEvaluatorType;
typedef internal::evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit);
const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols();
if ((!transpose) && src.isRValue())
{
// eval without temporary
dst.resize(src.rows(), src.cols());
dst.setZero();
dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
for (Index j=0; j<outerEvaluationSize; ++j)
{
dst.startVec(j);
for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
{
Scalar v = it.value();
dst.insertBackByOuterInner(j,it.index()) = v;
}
}
dst.finalize();
}
else
{
// eval through a temporary
eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
(!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) &&
"the transpose operation is supposed to be handled in SparseMatrix::operator=");
enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) };
DstXprType temp(src.rows(), src.cols());
temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
for (Index j=0; j<outerEvaluationSize; ++j)
{
temp.startVec(j);
for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
{
Scalar v = it.value();
temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
}
}
temp.finalize();
dst = temp.markAsRValue();
}
}
// Generic Sparse to Sparse assignment
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse>
{
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
assign_sparse_to_sparse(dst.derived(), src.derived());
}
};
// Generic Sparse to Dense assignment
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense>
{
static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value)
dst.setZero();
internal::evaluator<SrcXprType> srcEval(src);
resize_if_allowed(dst, src, func);
internal::evaluator<DstXprType> dstEval(dst);
const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
for (Index j=0; j<outerEvaluationSize; ++j)
for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value());
}
};
// Specialization for "dst = dec.solve(rhs)"
// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse>
{
typedef Solve<DecType,RhsType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
src.dec()._solve_impl(src.rhs(), dst);
}
};
struct Diagonal2Sparse {};
template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; };
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
{
typedef typename DstXprType::StorageIndex StorageIndex;
typedef typename DstXprType::Scalar Scalar;
typedef Array<StorageIndex,Dynamic,1> ArrayXI;
typedef Array<Scalar,Dynamic,1> ArrayXS;
template<int Options>
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
Index size = src.diagonal().size();
dst.makeCompressed();
dst.resizeNonZeros(size);
Map<ArrayXI>(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1);
Map<ArrayXI>(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size));
Map<ArrayXS>(dst.valuePtr(), size) = src.diagonal();
}
template<typename DstDerived>
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
dst.diagonal() = src.diagonal();
}
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.diagonal() += src.diagonal(); }
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.diagonal() -= src.diagonal(); }
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSEASSIGN_H