Files
bullet3/Demos/MiniCL_VectorAdd/MiniCL_VectorAdd.cpp
erwin.coumans fb6146f0be Added MiniCL, a limited subset of OpenCL, the open standard for parallel programming of heterogeneous systems.
MiniCL includes a cross-platform run-time frontend based on pthreads, Win32 Threads, or libspe2 for Cell SPU.
It is there, to bridge the gap until OpenCL is more widely available.

See Bullet/Demos/VectorAdd, influenced by NVidia OpenCL Jumpstart Guide:
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
2009-05-22 01:43:37 +00:00

173 lines
6.5 KiB
C++

///VectorAdd sample, from the NVidia JumpStart Guide
///http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
///Instead of #include <CL/cl.h> we include <MiniCL/cl.h>
///Apart from this include file, all other code should compile and work on OpenCL compliant implementation
#include <MiniCL/cl.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
void printDevInfo(cl_device_id device)
{
char device_string[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_string), &device_string, NULL);
printf( " Device %s:\n", device_string);
// CL_DEVICE_INFO
cl_device_type type;
clGetDeviceInfo(device, CL_DEVICE_TYPE, sizeof(type), &type, NULL);
if( type & CL_DEVICE_TYPE_CPU )
printf(" CL_DEVICE_TYPE:\t\t%s\n", "CL_DEVICE_TYPE_CPU");
if( type & CL_DEVICE_TYPE_GPU )
printf( " CL_DEVICE_TYPE:\t\t%s\n", "CL_DEVICE_TYPE_GPU");
if( type & CL_DEVICE_TYPE_ACCELERATOR )
printf( " CL_DEVICE_TYPE:\t\t%s\n", "CL_DEVICE_TYPE_ACCELERATOR");
if( type & CL_DEVICE_TYPE_DEFAULT )
printf( " CL_DEVICE_TYPE:\t\t%s\n", "CL_DEVICE_TYPE_DEFAULT");
// CL_DEVICE_MAX_COMPUTE_UNITS
cl_uint compute_units;
clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(compute_units), &compute_units, NULL);
printf( " CL_DEVICE_MAX_COMPUTE_UNITS:\t%d\n", compute_units);
// CL_DEVICE_MAX_WORK_GROUP_SIZE
size_t workitem_size[3];
clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(workitem_size), &workitem_size, NULL);
printf( " CL_DEVICE_MAX_WORK_ITEM_SIZES:\t%d / %d / %d \n", workitem_size[0], workitem_size[1], workitem_size[2]);
}
// Main function
// *********************************************************************
int main(int argc, char **argv)
{
void *srcA, *srcB, *dst; // Host buffers for OpenCL test
cl_context cxGPUContext; // OpenCL context
cl_command_queue cqCommandQue; // OpenCL command que
cl_device_id* cdDevices; // OpenCL device list
cl_program cpProgram; // OpenCL program
cl_kernel ckKernel; // OpenCL kernel
cl_mem cmMemObjs[3]; // OpenCL memory buffer objects: 3 for device
size_t szGlobalWorkSize[1]; // 1D var for Total # of work items
size_t szLocalWorkSize[1]; // 1D var for # of work items in the work group
size_t szParmDataBytes; // Byte size of context information
cl_int ciErr1, ciErr2; // Error code var
int iTestN = 100000 * 8; // Size of Vectors to process
// set Global and Local work size dimensions
szGlobalWorkSize[0] = iTestN >> 3; // do 8 computations per work item
szLocalWorkSize[0]= iTestN>>3;
// Allocate and initialize host arrays
srcA = (void *)malloc (sizeof(cl_float) * iTestN);
srcB = (void *)malloc (sizeof(cl_float) * iTestN);
dst = (void *)malloc (sizeof(cl_float) * iTestN);
int i;
// Initialize arrays with some values
for (i=0;i<iTestN;i++)
{
((cl_float*)srcA)[i] = cl_float(i);
((cl_float*)srcB)[i] = 2;
((cl_float*)dst)[i]=-1;
}
// Create OpenCL context & context
cxGPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_CPU, NULL, NULL, &ciErr1); //could also be CL_DEVICE_TYPE_GPU
// Query all devices available to the context
ciErr1 |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);
cdDevices = (cl_device_id*)malloc(szParmDataBytes);
ciErr1 |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, szParmDataBytes, cdDevices, NULL);
if (cdDevices)
{
printDevInfo(cdDevices[0]);
}
// Create a command queue for first device the context reported
cqCommandQue = clCreateCommandQueue(cxGPUContext, cdDevices[0], 0, &ciErr2);
ciErr1 |= ciErr2;
// Allocate the OpenCL source and result buffer memory objects on the device GMEM
cmMemObjs[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float8) * szGlobalWorkSize[0], srcA, &ciErr2);
ciErr1 |= ciErr2;
cmMemObjs[1] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float8) * szGlobalWorkSize[0], srcB, &ciErr2);
ciErr1 |= ciErr2;
cmMemObjs[2] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float8) * szGlobalWorkSize[0], NULL, &ciErr2);
ciErr1 |= ciErr2;
///create kernels from binary
int numDevices = 1;
cl_int err;
::size_t* lengths = (::size_t*) malloc(numDevices * sizeof(::size_t));
const unsigned char** images = (const unsigned char**) malloc(numDevices * sizeof(const void*));
for (i = 0; i < numDevices; ++i) {
images[i] = 0;
lengths[i] = 0;
}
cpProgram = clCreateProgramWithBinary(cxGPUContext, numDevices,cdDevices,lengths, images, 0, &err);
// Build the executable program from a binary
ciErr1 |= clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
// Create the kernel
ckKernel = clCreateKernel(cpProgram, "VectorAdd", &ciErr1);
// Set the Argument values
ciErr1 |= clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmMemObjs[0]);
ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmMemObjs[1]);
ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmMemObjs[2]);
// Copy input data from host to GPU and launch kernel
ciErr1 |= clEnqueueNDRangeKernel(cqCommandQue, ckKernel, 1, NULL, szGlobalWorkSize, szLocalWorkSize, 0, NULL, NULL);
// Read back results and check accumulated errors
ciErr1 |= clEnqueueReadBuffer(cqCommandQue, cmMemObjs[2], CL_TRUE, 0, sizeof(cl_float8) * szGlobalWorkSize[0], dst, 0, NULL, NULL);
// Release kernel, program, and memory objects
// NOTE: Most properly this should be done at any of the exit points above, but it is omitted elsewhere for clarity.
free(cdDevices);
clReleaseKernel(ckKernel);
clReleaseProgram(cpProgram);
clReleaseCommandQueue(cqCommandQue);
clReleaseContext(cxGPUContext);
// print the results
int iErrorCount = 0;
for (i = 0; i < iTestN; i++)
{
if (((float*)dst)[i] != ((float*)srcA)[i]+((float*)srcB)[i])
iErrorCount++;
}
if (iErrorCount)
{
printf("MiniCL validation FAILED\n");
} else
{
printf("MiniCL validation SUCCESSFULL\n");
}
// Free host memory, close log and return success
for (i = 0; i < 3; i++)
{
clReleaseMemObject(cmMemObjs[i]);
}
free(srcA);
free(srcB);
free (dst);
}