Files
bullet3/examples/ThirdPartyLibs/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
erwincoumans ae8e83988b Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
2019-01-22 21:08:37 -08:00

227 lines
6.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BASIC_PRECONDITIONERS_H
#define EIGEN_BASIC_PRECONDITIONERS_H
namespace Eigen {
/** \ingroup IterativeLinearSolvers_Module
* \brief A preconditioner based on the digonal entries
*
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
\code
A.diagonal().asDiagonal() . x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
*
* \implsparsesolverconcept
*
* This preconditioner is suitable for both selfadjoint and general problems.
* The diagonal entries are pre-inverted and stored into a dense vector.
*
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
*
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
*/
template <typename _Scalar>
class DiagonalPreconditioner
{
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
public:
typedef typename Vector::StorageIndex StorageIndex;
enum {
ColsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic
};
DiagonalPreconditioner() : m_isInitialized(false) {}
template<typename MatType>
explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
{
compute(mat);
}
Index rows() const { return m_invdiag.size(); }
Index cols() const { return m_invdiag.size(); }
template<typename MatType>
DiagonalPreconditioner& analyzePattern(const MatType& )
{
return *this;
}
template<typename MatType>
DiagonalPreconditioner& factorize(const MatType& mat)
{
m_invdiag.resize(mat.cols());
for(int j=0; j<mat.outerSize(); ++j)
{
typename MatType::InnerIterator it(mat,j);
while(it && it.index()!=j) ++it;
if(it && it.index()==j && it.value()!=Scalar(0))
m_invdiag(j) = Scalar(1)/it.value();
else
m_invdiag(j) = Scalar(1);
}
m_isInitialized = true;
return *this;
}
template<typename MatType>
DiagonalPreconditioner& compute(const MatType& mat)
{
return factorize(mat);
}
/** \internal */
template<typename Rhs, typename Dest>
void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_invdiag.array() * b.array() ;
}
template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
eigen_assert(m_invdiag.size()==b.rows()
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
}
ComputationInfo info() { return Success; }
protected:
Vector m_invdiag;
bool m_isInitialized;
};
/** \ingroup IterativeLinearSolvers_Module
* \brief Jacobi preconditioner for LeastSquaresConjugateGradient
*
* This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
\code
(A.adjoint() * A).diagonal().asDiagonal() * x = b
\endcode
*
* \tparam _Scalar the type of the scalar.
*
* \implsparsesolverconcept
*
* The diagonal entries are pre-inverted and stored into a dense vector.
*
* \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
*/
template <typename _Scalar>
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
{
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DiagonalPreconditioner<_Scalar> Base;
using Base::m_invdiag;
public:
LeastSquareDiagonalPreconditioner() : Base() {}
template<typename MatType>
explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
{
compute(mat);
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
{
return *this;
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
{
// Compute the inverse squared-norm of each column of mat
m_invdiag.resize(mat.cols());
if(MatType::IsRowMajor)
{
m_invdiag.setZero();
for(Index j=0; j<mat.outerSize(); ++j)
{
for(typename MatType::InnerIterator it(mat,j); it; ++it)
m_invdiag(it.index()) += numext::abs2(it.value());
}
for(Index j=0; j<mat.cols(); ++j)
if(numext::real(m_invdiag(j))>RealScalar(0))
m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
}
else
{
for(Index j=0; j<mat.outerSize(); ++j)
{
RealScalar sum = mat.innerVector(j).squaredNorm();
if(sum>RealScalar(0))
m_invdiag(j) = RealScalar(1)/sum;
else
m_invdiag(j) = RealScalar(1);
}
}
Base::m_isInitialized = true;
return *this;
}
template<typename MatType>
LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
{
return factorize(mat);
}
ComputationInfo info() { return Success; }
protected:
};
/** \ingroup IterativeLinearSolvers_Module
* \brief A naive preconditioner which approximates any matrix as the identity matrix
*
* \implsparsesolverconcept
*
* \sa class DiagonalPreconditioner
*/
class IdentityPreconditioner
{
public:
IdentityPreconditioner() {}
template<typename MatrixType>
explicit IdentityPreconditioner(const MatrixType& ) {}
template<typename MatrixType>
IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
template<typename MatrixType>
IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
template<typename MatrixType>
IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
template<typename Rhs>
inline const Rhs& solve(const Rhs& b) const { return b; }
ComputationInfo info() { return Success; }
};
} // end namespace Eigen
#endif // EIGEN_BASIC_PRECONDITIONERS_H