Files
bullet3/Extras/PhysicsInterface/CcdPhysics/SimulationIsland.cpp
2006-08-09 19:38:21 +00:00

468 lines
11 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SimulationIsland.h"
#include "SimdTransform.h"
#include "CcdPhysicsController.h"
#include "BroadphaseCollision/OverlappingPairCache.h"
#include "CollisionShapes/CollisionShape.h"
#include "BroadphaseCollision/Dispatcher.h"
#include "ConstraintSolver/ContactSolverInfo.h"
#include "ConstraintSolver/ConstraintSolver.h"
#include "ConstraintSolver/TypedConstraint.h"
#include "IDebugDraw.h"
extern float gContactBreakingTreshold;
bool SimulationIsland::Simulate(IDebugDraw* debugDrawer,int numSolverIterations,TypedConstraint** constraintsBaseAddress,BroadphasePair* overlappingPairBaseAddress, Dispatcher* dispatcher,BroadphaseInterface* broadphase,class ConstraintSolver* solver,float timeStep)
{
#ifdef USE_QUICKPROF
Profiler::beginBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF
{
// std::vector<CcdPhysicsController*>::iterator i;
int k;
for (k=0;k<GetNumControllers();k++)
{
CcdPhysicsController* ctrl = m_controllers[k];
// SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
//todo: only do this when necessary, it's used for contact points
body->m_cachedInvertedWorldTransform = body->m_worldTransform.inverse();
if (body->IsActive())
{
if (!body->IsStatic())
{
body->applyForces( timeStep);
body->integrateVelocities( timeStep);
body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform);
}
}
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF
//BroadphaseInterface* scene = GetBroadphase();
//
// collision detection (?)
//
#ifdef USE_QUICKPROF
Profiler::beginBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF
// int numsubstep = m_numIterations;
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_enableSatConvex = false;//m_enableSatCollisionDetection;
dispatchInfo.m_debugDraw = debugDrawer;
std::vector<BroadphasePair> overlappingPairs;
overlappingPairs.resize(this->m_overlappingPairIndices.size());
//gather overlapping pair info
int i;
for (i=0;i<m_overlappingPairIndices.size();i++)
{
overlappingPairs[i] = overlappingPairBaseAddress[m_overlappingPairIndices[i]];
}
//pairCache->RefreshOverlappingPairs();
if (overlappingPairs.size())
{
dispatcher->DispatchAllCollisionPairs(&overlappingPairs[0],overlappingPairs.size(),dispatchInfo);///numsubstep,g);
}
//scatter overlapping pair info, mainly the created algorithms/contact caches
for (i=0;i<m_overlappingPairIndices.size();i++)
{
overlappingPairBaseAddress[m_overlappingPairIndices[i]] = overlappingPairs[i];
}
#ifdef USE_QUICKPROF
Profiler::endBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF
int numRigidBodies = m_controllers.size();
//contacts
#ifdef USE_QUICKPROF
Profiler::beginBlock("SolveConstraint");
#endif //USE_QUICKPROF
//solve the regular constraints (point 2 point, hinge, etc)
for (int g=0;g<numSolverIterations;g++)
{
//
// constraint solving
//
int i;
int numConstraints = m_constraintIndices.size();
//point to point constraints
for (i=0;i< numConstraints ; i++ )
{
TypedConstraint* constraint = constraintsBaseAddress[m_constraintIndices[i]];
constraint->BuildJacobian();
constraint->SolveConstraint( timeStep );
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("SolveConstraint");
#endif //USE_QUICKPROF
/*
//solve the vehicles
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
RaycastVehicle* vehicle = wrapperVehicle->GetVehicle();
vehicle->UpdateVehicle( timeStep);
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
*/
/*
Profiler::beginBlock("CallbackTriggers");
#endif //USE_QUICKPROF
CallbackTriggers();
#ifdef USE_QUICKPROF
Profiler::endBlock("CallbackTriggers");
}
*/
//OverlappingPairCache* scene = GetCollisionWorld()->GetPairCache();
ContactSolverInfo solverInfo;
solverInfo.m_friction = 0.9f;
solverInfo.m_numIterations = numSolverIterations;
solverInfo.m_timeStep = timeStep;
solverInfo.m_restitution = 0.f;//m_restitution;
if (m_manifolds.size())
{
solver->SolveGroup( &m_manifolds[0],m_manifolds.size(),solverInfo,0);
}
#ifdef USE_QUICKPROF
Profiler::beginBlock("proceedToTransform");
#endif //USE_QUICKPROF
{
{
UpdateAabbs(debugDrawer,broadphase,timeStep);
float toi = 1.f;
//experimental continuous collision detection
/* if (m_ccdMode == 3)
{
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_dispatchFunc = DispatcherInfo::DISPATCH_CONTINUOUS;
// GetCollisionWorld()->GetDispatcher()->DispatchAllCollisionPairs(scene,dispatchInfo);
toi = dispatchInfo.m_timeOfImpact;
}
*/
//
// integrating solution
//
{
std::vector<CcdPhysicsController*>::iterator i;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = *i;
SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
if (body->IsActive())
{
if (!body->IsStatic())
{
body->predictIntegratedTransform(timeStep* toi, predictedTrans);
body->proceedToTransform( predictedTrans);
}
}
}
}
//
// disable sleeping physics objects
//
std::vector<CcdPhysicsController*> m_sleepingControllers;
std::vector<CcdPhysicsController*>::iterator i;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
ctrl->UpdateDeactivation(timeStep);
if (ctrl->wantsSleeping())
{
if (body->GetActivationState() == ACTIVE_TAG)
body->SetActivationState( WANTS_DEACTIVATION );
} else
{
if (body->GetActivationState() != DISABLE_DEACTIVATION)
body->SetActivationState( ACTIVE_TAG );
}
if (true)
{
if (body->GetActivationState() == ISLAND_SLEEPING)
{
m_sleepingControllers.push_back(ctrl);
}
} else
{
if (ctrl->wantsSleeping())
{
m_sleepingControllers.push_back(ctrl);
}
}
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("proceedToTransform");
Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF
SyncMotionStates(timeStep);
#ifdef USE_QUICKPROF
Profiler::endBlock("SyncMotionStates");
#endif //USE_QUICKPROF
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//sync wheels for vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
wrapperVehicle->SyncWheels();
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
return true;
}
}
void SimulationIsland::SyncMotionStates(float timeStep)
{
std::vector<CcdPhysicsController*>::iterator i;
//
// synchronize the physics and graphics transformations
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
ctrl->SynchronizeMotionStates(timeStep);
}
}
void SimulationIsland::UpdateAabbs(IDebugDraw* debugDrawer,BroadphaseInterface* scene,float timeStep)
{
std::vector<CcdPhysicsController*>::iterator i;
//
// update aabbs, only for moving objects (!)
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
SimdPoint3 minAabb,maxAabb;
CollisionShape* shapeinterface = ctrl->GetCollisionShape();
shapeinterface->CalculateTemporalAabb(body->getCenterOfMassTransform(),
body->getLinearVelocity(),
//body->getAngularVelocity(),
SimdVector3(0.f,0.f,0.f),//no angular effect for now //body->getAngularVelocity(),
timeStep,minAabb,maxAabb);
SimdVector3 manifoldExtraExtents(gContactBreakingTreshold,gContactBreakingTreshold,gContactBreakingTreshold);
minAabb -= manifoldExtraExtents;
maxAabb += manifoldExtraExtents;
BroadphaseProxy* bp = body->m_broadphaseHandle;
if (bp)
{
SimdVector3 color (1,1,0);
class IDebugDraw* m_debugDrawer = 0;
/*
if (m_debugDrawer)
{
//draw aabb
switch (body->GetActivationState())
{
case ISLAND_SLEEPING:
{
color.setValue(1,1,1);
break;
}
case WANTS_DEACTIVATION:
{
color.setValue(0,0,1);
break;
}
case ACTIVE_TAG:
{
break;
}
case DISABLE_DEACTIVATION:
{
color.setValue(1,0,1);
};
};
if (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_DrawAabb)
{
DrawAabb(m_debugDrawer,minAabb,maxAabb,color);
}
}
*/
if ( (maxAabb-minAabb).length2() < 1e12f)
{
scene->SetAabb(bp,minAabb,maxAabb);
} else
{
//something went wrong, investigate
//removeCcdPhysicsController(ctrl);
body->SetActivationState(DISABLE_SIMULATION);
static bool reportMe = true;
if (reportMe)
{
reportMe = false;
//printf("Overflow in AABB, object removed from simulation \n");
//printf("If you can reproduce this, please email bugs@continuousphysics.com\n");
//printf("Please include above information, your Platform, version of OS.\n");
//printf("Thanks.\n");
}
}
}
}
}