Files
bullet3/Demos/ForkLiftDemo/ForkLiftPhysicsSetup.cpp
2015-03-28 12:36:57 -07:00

504 lines
17 KiB
C++

#include "ForkLiftPhysicsSetup.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/MLCPSolvers/btMLCPSolver.h"
#include "OpenGLWindow/CommonRenderInterface.h"
btScalar maxMotorImpulse = 1400.f;
btScalar loadMass = 350.f;//
#ifdef FORCE_ZAXIS_UP
int rightIndex = 0;
int upIndex = 2;
int forwardIndex = 1;
btVector3 wheelDirectionCS0(0,0,-1);
btVector3 wheelAxleCS(1,0,0);
#else
int rightIndex = 0;
int upIndex = 1;
int forwardIndex = 2;
btVector3 wheelDirectionCS0(0,-1,0);
btVector3 wheelAxleCS(-1,0,0);
#endif
float defaultBreakingForce = 10.f;
float gBreakingForce = 100.f;
float gEngineForce = 0.f;
float gVehicleSteering = 0.f;
float steeringIncrement = 0.04f;
float steeringClamp = 0.3f;
float wheelRadius = 0.5f;
float wheelWidth = 0.4f;
btScalar suspensionRestLength(0.6);
#define CUBE_HALF_EXTENTS 1
float suspensionStiffness = 20.f;
float suspensionDamping = 2.3f;
float suspensionCompression = 4.4f;
float rollInfluence = 0.1f;//1.0f;
float wheelFriction = 1000;//BT_LARGE_FLOAT;
struct ForkLiftInternalData
{
btRigidBody* m_carChassis;
//----------------------------
btRigidBody* m_liftBody;
btVector3 m_liftStartPos;
btHingeConstraint* m_liftHinge;
btRigidBody* m_forkBody;
btVector3 m_forkStartPos;
btSliderConstraint* m_forkSlider;
btRigidBody* m_loadBody;
btVector3 m_loadStartPos;
bool m_useDefaultCamera;
class btTriangleIndexVertexArray* m_indexVertexArrays;
btVector3* m_vertices;
btRaycastVehicle::btVehicleTuning m_tuning;
btVehicleRaycaster* m_vehicleRayCaster;
btRaycastVehicle* m_vehicle;
btCollisionShape* m_wheelShape;
float m_cameraHeight;
float m_minCameraDistance;
float m_maxCameraDistance;
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
class btBroadphaseInterface* m_overlappingPairCache;
class btCollisionDispatcher* m_dispatcher;
class btConstraintSolver* m_constraintSolver;
class btDefaultCollisionConfiguration* m_collisionConfiguration;
class btDiscreteDynamicsWorld* m_dynamicsWorld;
int m_wheelInstances[4];
bool useMCLPSolver;
ForkLiftInternalData()
:m_carChassis(0),
m_liftBody(0),
m_forkBody(0),
m_loadBody(0),
m_indexVertexArrays(0),
m_vertices(0),
m_cameraHeight(4.f),
m_minCameraDistance(3.f),
m_maxCameraDistance(10.f),
m_overlappingPairCache(0),
m_dispatcher(0),
m_constraintSolver(0),
m_collisionConfiguration(0),
m_dynamicsWorld(0),
useMCLPSolver(false)
{
m_vehicle = 0;
m_wheelShape = 0;
m_useDefaultCamera = false;
}
};
ForkLiftPhysicsSetup::ForkLiftPhysicsSetup()
{
m_data = new ForkLiftInternalData;
}
ForkLiftPhysicsSetup::~ForkLiftPhysicsSetup()
{
delete m_data;
}
void ForkLiftPhysicsSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge)
{
#ifdef FORCE_ZAXIS_UP
m_cameraUp = btVector3(0,0,1);
m_forwardAxis = 1;
#endif
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
m_data->m_collisionShapes.push_back(groundShape);
m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_data->m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
if (m_data->useMCLPSolver)
{
btDantzigSolver* mlcp = new btDantzigSolver();
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
btMLCPSolver* sol = new btMLCPSolver(mlcp);
m_data->m_constraintSolver = sol;
} else
{
m_data->m_constraintSolver = new btSequentialImpulseConstraintSolver();
}
m_data->m_dynamicsWorld = new btDiscreteDynamicsWorld(m_data->m_dispatcher,m_data->m_overlappingPairCache,m_data->m_constraintSolver,m_data->m_collisionConfiguration);
if (m_data->useMCLPSolver)
{
m_data->m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
} else
{
m_data->m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
}
#ifdef FORCE_ZAXIS_UP
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
#endif
//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-3,0));
//either use heightfield or triangle mesh
//create ground object
localCreateRigidBody(0,tr,groundShape);
#ifdef FORCE_ZAXIS_UP
// indexRightAxis = 0;
// indexUpAxis = 2;
// indexForwardAxis = 1;
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,2.f, 0.5f));
btCompoundShape* compound = new btCompoundShape();
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,0,1));
#else
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
m_data->m_collisionShapes.push_back(chassisShape);
btCompoundShape* compound = new btCompoundShape();
m_data->m_collisionShapes.push_back(compound);
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,1,0));
#endif
compound->addChildShape(localTrans,chassisShape);
{
btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
btTransform suppLocalTrans;
suppLocalTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
compound->addChildShape(suppLocalTrans, suppShape);
}
tr.setOrigin(btVector3(0,0.f,0));
m_data->m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
//m_carChassis->setDamping(0.2,0.2);
m_data->m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
gfxBridge.createCollisionShapeGraphicsObject(m_data->m_wheelShape);
int wheelGraphicsIndex = m_data->m_wheelShape->getUserIndex();
const float position[4]={0,10,10,0};
const float quaternion[4]={0,0,0,1};
const float color[4]={0,1,0,1};
const float scaling[4] = {1,1,1,1};
for (int i=0;i<4;i++)
{
m_data->m_wheelInstances[i] = gfxBridge.registerGraphicsInstance(wheelGraphicsIndex, position, quaternion, color, scaling);
}
{
btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
m_data->m_collisionShapes.push_back(liftShape);
btTransform liftTrans;
m_data->m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
liftTrans.setIdentity();
liftTrans.setOrigin(m_data->m_liftStartPos);
m_data->m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);
btTransform localA, localB;
localA.setIdentity();
localB.setIdentity();
localA.getBasis().setEulerZYX(0, SIMD_HALF_PI, 0);
localA.setOrigin(btVector3(0.0, 1.0, 3.05));
localB.getBasis().setEulerZYX(0, SIMD_HALF_PI, 0);
localB.setOrigin(btVector3(0.0, -1.5, -0.05));
m_data->m_liftHinge = new btHingeConstraint(*m_data->m_carChassis,*m_data->m_liftBody, localA, localB);
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_data->m_liftHinge->setLimit(0.0f, 0.0f);
m_data->m_dynamicsWorld->addConstraint(m_data->m_liftHinge, true);
btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
m_data->m_collisionShapes.push_back(forkShapeA);
btCompoundShape* forkCompound = new btCompoundShape();
m_data->m_collisionShapes.push_back(forkCompound);
btTransform forkLocalTrans;
forkLocalTrans.setIdentity();
forkCompound->addChildShape(forkLocalTrans, forkShapeA);
btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
m_data->m_collisionShapes.push_back(forkShapeB);
forkLocalTrans.setIdentity();
forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
forkCompound->addChildShape(forkLocalTrans, forkShapeB);
btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
m_data->m_collisionShapes.push_back(forkShapeC);
forkLocalTrans.setIdentity();
forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
forkCompound->addChildShape(forkLocalTrans, forkShapeC);
btTransform forkTrans;
m_data->m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
forkTrans.setIdentity();
forkTrans.setOrigin(m_data->m_forkStartPos);
m_data->m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);
localA.setIdentity();
localB.setIdentity();
localA.getBasis().setEulerZYX(0, 0, SIMD_HALF_PI);
localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
localB.getBasis().setEulerZYX(0, 0, SIMD_HALF_PI);
localB.setOrigin(btVector3(0.0, 0.0, -0.1));
m_data->m_forkSlider = new btSliderConstraint(*m_data->m_liftBody, *m_data->m_forkBody, localA, localB, true);
m_data->m_forkSlider->setLowerLinLimit(0.1f);
m_data->m_forkSlider->setUpperLinLimit(0.1f);
// m_forkSlider->setLowerAngLimit(-LIFT_EPS);
// m_forkSlider->setUpperAngLimit(LIFT_EPS);
m_data->m_forkSlider->setLowerAngLimit(0.0f);
m_data->m_forkSlider->setUpperAngLimit(0.0f);
m_data->m_dynamicsWorld->addConstraint(m_data->m_forkSlider, true);
btCompoundShape* loadCompound = new btCompoundShape();
m_data->m_collisionShapes.push_back(loadCompound);
btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
m_data->m_collisionShapes.push_back(loadShapeA);
btTransform loadTrans;
loadTrans.setIdentity();
loadCompound->addChildShape(loadTrans, loadShapeA);
btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
m_data->m_collisionShapes.push_back(loadShapeB);
loadTrans.setIdentity();
loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
loadCompound->addChildShape(loadTrans, loadShapeB);
btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
m_data->m_collisionShapes.push_back(loadShapeC);
loadTrans.setIdentity();
loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
loadCompound->addChildShape(loadTrans, loadShapeC);
loadTrans.setIdentity();
m_data->m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
loadTrans.setOrigin(m_data->m_loadStartPos);
m_data->m_loadBody = localCreateRigidBody(loadMass, loadTrans, loadCompound);
}
/// create vehicle
{
m_data->m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_data->m_dynamicsWorld);
m_data->m_vehicle = new btRaycastVehicle(m_data->m_tuning,m_data->m_carChassis,m_data->m_vehicleRayCaster);
///never deactivate the vehicle
m_data->m_carChassis->setActivationState(DISABLE_DEACTIVATION);
m_data->m_dynamicsWorld->addVehicle(m_data->m_vehicle);
float connectionHeight = 1.2f;
bool isFrontWheel=true;
//choose coordinate system
m_data->m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);
#ifdef FORCE_ZAXIS_UP
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_data->m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_data->m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_data->m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_data->m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif //FORCE_ZAXIS_UP
isFrontWheel = false;
m_data->m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_data->m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif
m_data->m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_data->m_tuning,isFrontWheel);
for (int i=0;i<m_data->m_vehicle->getNumWheels();i++)
{
btWheelInfo& wheel = m_data->m_vehicle->getWheelInfo(i);
wheel.m_suspensionStiffness = suspensionStiffness;
wheel.m_wheelsDampingRelaxation = suspensionDamping;
wheel.m_wheelsDampingCompression = suspensionCompression;
wheel.m_frictionSlip = wheelFriction;
wheel.m_rollInfluence = rollInfluence;
}
}
resetForklift();
gfxBridge.autogenerateGraphicsObjects(m_data->m_dynamicsWorld);
// setCameraDistance(26.f);
}
void ForkLiftPhysicsSetup::resetForklift()
{
gVehicleSteering = 0.f;
gBreakingForce = defaultBreakingForce;
gEngineForce = 0.f;
m_data->m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
m_data->m_carChassis->setLinearVelocity(btVector3(0,0,0));
m_data->m_carChassis->setAngularVelocity(btVector3(0,0,0));
m_data->m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_data->m_carChassis->getBroadphaseHandle(),m_data->m_dynamicsWorld->getDispatcher());
if (m_data->m_vehicle)
{
m_data->m_vehicle->resetSuspension();
for (int i=0;i<m_data->m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_data->m_vehicle->updateWheelTransform(i,true);
}
}
btTransform liftTrans;
liftTrans.setIdentity();
liftTrans.setOrigin(m_data->m_liftStartPos);
m_data->m_liftBody->activate();
m_data->m_liftBody->setCenterOfMassTransform(liftTrans);
m_data->m_liftBody->setLinearVelocity(btVector3(0,0,0));
m_data->m_liftBody->setAngularVelocity(btVector3(0,0,0));
btTransform forkTrans;
forkTrans.setIdentity();
forkTrans.setOrigin(m_data->m_forkStartPos);
m_data->m_forkBody->activate();
m_data->m_forkBody->setCenterOfMassTransform(forkTrans);
m_data->m_forkBody->setLinearVelocity(btVector3(0,0,0));
m_data->m_forkBody->setAngularVelocity(btVector3(0,0,0));
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_data->m_liftHinge->setLimit(0.0f, 0.0f);
m_data->m_liftHinge->enableAngularMotor(false, 0, 0);
m_data->m_forkSlider->setLowerLinLimit(0.1f);
m_data->m_forkSlider->setUpperLinLimit(0.1f);
m_data->m_forkSlider->setPoweredLinMotor(false);
btTransform loadTrans;
loadTrans.setIdentity();
loadTrans.setOrigin(m_data->m_loadStartPos);
m_data->m_loadBody->activate();
m_data->m_loadBody->setCenterOfMassTransform(loadTrans);
m_data->m_loadBody->setLinearVelocity(btVector3(0,0,0));
m_data->m_loadBody->setAngularVelocity(btVector3(0,0,0));
}
btRigidBody* ForkLiftPhysicsSetup::localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
//#define USE_MOTIONSTATE 1
#ifdef USE_MOTIONSTATE
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia);
btRigidBody* body = new btRigidBody(cInfo);
body->setContactProcessingThreshold(BT_LARGE_FLOAT);//m_defaultContactProcessingThreshold);
#else
btRigidBody* body = new btRigidBody(mass,0,shape,localInertia);
body->setWorldTransform(startTransform);
#endif//
m_data->m_dynamicsWorld->addRigidBody(body);
return body;
}
void ForkLiftPhysicsSetup::exitPhysics()
{
}
void ForkLiftPhysicsSetup::stepSimulation(float deltaTime)
{
m_data->m_dynamicsWorld->stepSimulation(deltaTime);
}
void ForkLiftPhysicsSetup::debugDraw(int debugDrawFlags)
{
}
bool ForkLiftPhysicsSetup::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
return false;
}
bool ForkLiftPhysicsSetup::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
return false;
}
void ForkLiftPhysicsSetup::removePickingConstraint()
{
}
void ForkLiftPhysicsSetup::syncPhysicsToGraphics(GraphicsPhysicsBridge& gfxBridge)
{
gfxBridge.syncPhysicsToGraphics(m_data->m_dynamicsWorld);
//sync wheels
for (int i=0;i<m_data->m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_data->m_vehicle->updateWheelTransform(i,true);
CommonRenderInterface* renderer = gfxBridge.getRenderInterface();
if (renderer)
{
btTransform tr = m_data->m_vehicle->getWheelInfo(i).m_worldTransform;
btVector3 pos=tr.getOrigin();
btQuaternion orn = tr.getRotation();
renderer->writeSingleInstanceTransformToCPU(pos,orn,m_data->m_wheelInstances[i]);
}
}
}
void ForkLiftPhysicsSetup::renderScene(GraphicsPhysicsBridge& gfxBridge)
{
gfxBridge.drawText3D("hi!",0,10,10,2);
}
void ForkLiftPhysicsSetup::lockLiftHinge()
{
}
void ForkLiftPhysicsSetup::lockForkSlider()
{
}