Files
bullet3/Demos3/bullet2/ChainDemo/ChainDemo.cpp

202 lines
5.7 KiB
C++

#include "ChainDemo.h"
#include "OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btVector3.h"
#include "BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btLemkeSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/MLCPSolvers/btMLCPSolver.h"
#define NUM_SPHERES 10
static const float scaling=0.35f;
ChainDemo::ChainDemo(SimpleOpenGL3App* app)
:Bullet2RigidBodyDemo(app)
{
}
ChainDemo::~ChainDemo()
{
}
void ChainDemo::createGround(int cubeShapeId)
{
{
btVector4 color(0.3,0.3,1,1);
btVector4 halfExtents(50,1,50,1);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-5,0));
m_glApp->m_instancingRenderer->registerGraphicsInstance(cubeShapeId,groundTransform.getOrigin(),groundTransform.getRotation(),color,halfExtents);
btBoxShape* groundShape = new btBoxShape(btVector3(btScalar(halfExtents[0]),btScalar(halfExtents[1]),btScalar(halfExtents[2])));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
body->setActivationState(DISABLE_DEACTIVATION);
}
}
}
void ChainDemo::initPhysics()
{
// Bullet2RigidBodyDemo::initPhysics();
m_config = new btDefaultCollisionConfiguration;
m_dispatcher = new btCollisionDispatcher(m_config);
m_bp = new btDbvtBroadphase();
//m_solver = new btNNCGConstraintSolver();
m_solver = new btSequentialImpulseConstraintSolver();
// btDantzigSolver* mlcp = new btDantzigSolver();
//btLemkeSolver* mlcp = new btLemkeSolver();
//m_solver = new btMLCPSolver(mlcp);
// m_solver = new btSequentialImpulseConstraintSolver();
//btMultiBodyConstraintSolver* solver = new btMultiBodyConstraintSolver();
//m_solver = solver;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_bp,m_solver,m_config);
m_dynamicsWorld->getSolverInfo().m_numIterations = 1000;
m_dynamicsWorld->getSolverInfo().m_splitImpulse = false;
int curColor=0;
//create ground
btScalar radius=scaling;
int unitCubeShapeId = m_glApp->registerCubeShape();
float pos[]={0,0,0};
float orn[]={0,0,0,1};
//eateGround(unitCubeShapeId);
int sphereShapeId = m_glApp->registerGraphicsSphereShape(radius,false);
{
btVector4 halfExtents(scaling,scaling,scaling,1);
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
btTransform startTransform;
startTransform.setIdentity();
btCollisionShape* colShape = new btSphereShape(scaling);
btScalar largeMass[]={1000,10,100,1000};
for (int i=0;i<1;i++)
{
btAlignedObjectArray<btRigidBody*> bodies;
for (int k=0;k<NUM_SPHERES;k++)
{
btVector3 localInertia(0,0,0);
btScalar mass = 0.f;
curColor = 1;
switch (k)
{
case 0:
{
mass = largeMass[i];
curColor = 0;
break;
}
case NUM_SPHERES-1:
{
mass = 0.f;
curColor = 2;
break;
}
default:
{
curColor = 1;
mass = 1.f;
}
};
if (mass)
colShape ->calculateLocalInertia(mass,localInertia);
btVector4 color = colors[curColor];
startTransform.setOrigin(btVector3(
btScalar(7.5+-i*5),
btScalar(6.*scaling+2.0*scaling*k),
btScalar(0)));
m_glApp->m_instancingRenderer->registerGraphicsInstance(sphereShapeId,startTransform.getOrigin(),startTransform.getRotation(),color,halfExtents);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
bodies.push_back(body);
body->setActivationState(DISABLE_DEACTIVATION);
m_dynamicsWorld->addRigidBody(body);
}
//add constraints
btVector3 pivotInA(0,radius,0);
btVector3 pivotInB(0,-radius,0);
for (int k=0;k<NUM_SPHERES-1;k++)
{
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*bodies[k],*bodies[k+1],pivotInA,pivotInB);
m_dynamicsWorld->addConstraint(p2p,true);
}
}
}
m_glApp->m_instancingRenderer->writeTransforms();
}
void ChainDemo::exitPhysics()
{
Bullet2RigidBodyDemo::exitPhysics();
}
void ChainDemo::renderScene()
{
//sync graphics -> physics world transforms
{
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btVector3 pos = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getOrigin();
btQuaternion orn = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getRotation();
m_glApp->m_instancingRenderer->writeSingleInstanceTransformToCPU(pos,orn,i);
}
m_glApp->m_instancingRenderer->writeTransforms();
}
m_glApp->m_instancingRenderer->renderScene();
}
void ChainDemo::stepSimulation(float dt)
{
m_dynamicsWorld->stepSimulation(dt,10,1./240.);
//m_dynamicsWorld->stepSimulation(dt,10,1./60.);
}