Files
bullet3/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
ejcoumans 3fe3b11924 use Dispatcher in ConcaveConvexCollisionAlgorithm (so it uses the registered collision algorithm, not hardcoded convexconcave)
improved performance of constraint solver by precalculating the cross product/impulse arm
added collision comparison code: ODE box-box, also sphere-triangle
added safety check into GJK, and an assert for AABB's that are very large
write partid/triangle index outside of GJK
2006-10-28 02:06:19 +00:00

768 lines
22 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btDiscreteDynamicsWorld.h"
//collision detection
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
#include <LinearMath/btTransformUtil.h>
//rigidbody & constraints
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
//for debug rendering
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btConeShape.h"
#include "BulletCollision/CollisionShapes/btTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btTriangleCallback.h"
#include "LinearMath/btIDebugDraw.h"
//vehicle
#include "BulletDynamics/Vehicle/btRaycastVehicle.h"
#include "BulletDynamics/Vehicle/btVehicleRaycaster.h"
#include "BulletDynamics/Vehicle/btWheelInfo.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btMotionState.h"
#include <algorithm>
btDiscreteDynamicsWorld::btDiscreteDynamicsWorld()
:btDynamicsWorld(),
m_constraintSolver(new btSequentialImpulseConstraintSolver),
m_debugDrawer(0),
m_gravity(0,-10,0),
m_localTime(1.f/60.f),
m_profileTimings(0)
{
m_islandManager = new btSimulationIslandManager();
m_ownsIslandManager = true;
m_ownsConstraintSolver = true;
}
btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btOverlappingPairCache* pairCache,btConstraintSolver* constraintSolver)
:btDynamicsWorld(dispatcher,pairCache),
m_constraintSolver(constraintSolver? constraintSolver: new btSequentialImpulseConstraintSolver),
m_debugDrawer(0),
m_gravity(0,-10,0),
m_localTime(1.f/60.f),
m_profileTimings(0)
{
m_islandManager = new btSimulationIslandManager();
m_ownsIslandManager = true;
m_ownsConstraintSolver = (constraintSolver==0);
}
btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld()
{
//only delete it when we created it
if (m_ownsIslandManager)
delete m_islandManager;
if (m_ownsConstraintSolver)
delete m_constraintSolver;
}
void btDiscreteDynamicsWorld::saveKinematicState(float timeStep)
{
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
btTransform predictedTrans;
if (body->GetActivationState() != ISLAND_SLEEPING)
{
if (body->isKinematicObject())
{
//to calculate velocities next frame
body->saveKinematicState(timeStep);
}
}
}
}
}
void btDiscreteDynamicsWorld::synchronizeMotionStates()
{
//todo: iterate over awake simulation islands!
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe)
{
btVector3 color(255.f,255.f,255.f);
switch(colObj->GetActivationState())
{
case ACTIVE_TAG:
color = btVector3(255.f,255.f,255.f);
case ISLAND_SLEEPING:
color = btVector3(0.f,255.f,0.f);
case WANTS_DEACTIVATION:
color = btVector3(0.f,255.f,255.f);
case DISABLE_DEACTIVATION:
color = btVector3(255.f,0.f,0.f);
case DISABLE_SIMULATION:
color = btVector3(255.f,255.f,0.f);
default:
{
color = btVector3(255.f,0.f,0.f);
}
};
debugDrawObject(colObj->m_worldTransform,colObj->m_collisionShape,color);
}
btRigidBody* body = btRigidBody::upcast(colObj);
if (body && body->getMotionState() && !body->isStaticOrKinematicObject())
{
if (body->GetActivationState() != ISLAND_SLEEPING)
{
btTransform interpolatedTransform;
btTransformUtil::integrateTransform(body->m_interpolationWorldTransform,body->getLinearVelocity(),body->getAngularVelocity(),m_localTime,interpolatedTransform);
body->getMotionState()->setWorldTransform(interpolatedTransform);
}
}
}
}
int btDiscreteDynamicsWorld::stepSimulation( float timeStep,int maxSubSteps, float fixedTimeStep)
{
int numSimulationSubSteps = 0;
if (maxSubSteps)
{
//fixed timestep with interpolation
m_localTime += timeStep;
if (m_localTime >= fixedTimeStep)
{
numSimulationSubSteps = int( m_localTime / fixedTimeStep);
m_localTime -= numSimulationSubSteps * fixedTimeStep;
}
} else
{
//variable timestep
fixedTimeStep = timeStep;
m_localTime = timeStep;
numSimulationSubSteps = 1;
maxSubSteps = 1;
}
//process some debugging flags
if (getDebugDrawer())
{
gDisableDeactivation = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0;
}
if (!btFuzzyZero(timeStep) && numSimulationSubSteps)
{
saveKinematicState(fixedTimeStep);
//clamp the number of substeps, to prevent simulation grinding spiralling down to a halt
int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps;
for (int i=0;i<clampedSimulationSteps;i++)
{
internalSingleStepSimulation(fixedTimeStep);
}
}
synchronizeMotionStates();
return numSimulationSubSteps;
}
void btDiscreteDynamicsWorld::internalSingleStepSimulation(float timeStep)
{
startProfiling(timeStep);
///update aabbs information
updateAabbs();
///apply gravity, predict motion
predictUnconstraintMotion(timeStep);
///perform collision detection
performDiscreteCollisionDetection();
calculateSimulationIslands();
btContactSolverInfo infoGlobal;
infoGlobal.m_timeStep = timeStep;
///solve non-contact constraints
solveNoncontactConstraints(infoGlobal);
///solve contact constraints
solveContactConstraints(infoGlobal);
///update vehicle simulation
updateVehicles(timeStep);
///CallbackTriggers();
///integrate transforms
integrateTransforms(timeStep);
updateActivationState( timeStep );
}
void btDiscreteDynamicsWorld::setGravity(const btVector3& gravity)
{
m_gravity = gravity;
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
body->setGravity(gravity);
}
}
}
void btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body)
{
removeCollisionObject(body);
}
void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body)
{
body->setGravity(m_gravity);
bool isDynamic = !(body->isStaticObject() || body->isKinematicObject());
short collisionFilterGroup = isDynamic? btBroadphaseProxy::DefaultFilter : btBroadphaseProxy::StaticFilter;
short collisionFilterMask = isDynamic? btBroadphaseProxy::AllFilter : btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter;
addCollisionObject(body,collisionFilterGroup,collisionFilterMask);
}
void btDiscreteDynamicsWorld::updateVehicles(float timeStep)
{
BEGIN_PROFILE("updateVehicles");
for (unsigned int i=0;i<m_vehicles.size();i++)
{
btRaycastVehicle* vehicle = m_vehicles[i];
vehicle->updateVehicle( timeStep);
}
END_PROFILE("updateVehicles");
}
void btDiscreteDynamicsWorld::updateActivationState(float timeStep)
{
BEGIN_PROFILE("updateActivationState");
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
body->updateDeactivation(timeStep);
if (body->wantsSleeping())
{
if (body->GetActivationState() == ACTIVE_TAG)
body->SetActivationState( WANTS_DEACTIVATION );
} else
{
if (body->GetActivationState() != DISABLE_DEACTIVATION)
body->SetActivationState( ACTIVE_TAG );
}
}
}
END_PROFILE("updateActivationState");
}
void btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint)
{
m_constraints.push_back(constraint);
}
void btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint)
{
std::vector<btTypedConstraint*>::iterator cit = std::find(m_constraints.begin(),m_constraints.end(),constraint);
if (!(cit==m_constraints.end()))
{
m_constraints.erase(cit);
}
}
void btDiscreteDynamicsWorld::addVehicle(btRaycastVehicle* vehicle)
{
m_vehicles.push_back(vehicle);
}
void btDiscreteDynamicsWorld::removeVehicle(btRaycastVehicle* vehicle)
{
std::vector<btRaycastVehicle*>::iterator vit = std::find(m_vehicles.begin(),m_vehicles.end(),vehicle);
if (!(vit==m_vehicles.end()))
{
m_vehicles.erase(vit);
}
}
void btDiscreteDynamicsWorld::solveContactConstraints(btContactSolverInfo& solverInfo)
{
BEGIN_PROFILE("solveContactConstraints");
struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
{
btContactSolverInfo& m_solverInfo;
btConstraintSolver* m_solver;
btIDebugDraw* m_debugDrawer;
InplaceSolverIslandCallback(
btContactSolverInfo& solverInfo,
btConstraintSolver* solver,
btIDebugDraw* debugDrawer)
:m_solverInfo(solverInfo),
m_solver(solver),
m_debugDrawer(debugDrawer)
{
}
virtual void ProcessIsland(btPersistentManifold** manifolds,int numManifolds)
{
m_solver->solveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer);
}
};
InplaceSolverIslandCallback solverCallback( solverInfo, m_constraintSolver, m_debugDrawer);
/// solve all the contact points and contact friction
m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld()->getCollisionObjectArray(),&solverCallback);
END_PROFILE("solveContactConstraints");
}
void btDiscreteDynamicsWorld::solveNoncontactConstraints(btContactSolverInfo& solverInfo)
{
BEGIN_PROFILE("solveNoncontactConstraints");
int i;
int numConstraints = m_constraints.size();
///constraint preparation: building jacobians
for (i=0;i< numConstraints ; i++ )
{
btTypedConstraint* constraint = m_constraints[i];
constraint->buildJacobian();
}
//solve the regular non-contact constraints (point 2 point, hinge, generic d6)
for (int g=0;g<solverInfo.m_numIterations;g++)
{
//
// constraint solving
//
for (i=0;i< numConstraints ; i++ )
{
btTypedConstraint* constraint = m_constraints[i];
constraint->solveConstraint( solverInfo.m_timeStep );
}
}
END_PROFILE("solveNoncontactConstraints");
}
void btDiscreteDynamicsWorld::calculateSimulationIslands()
{
BEGIN_PROFILE("calculateSimulationIslands");
getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher());
{
int i;
int numConstraints = m_constraints.size();
for (i=0;i< numConstraints ; i++ )
{
btTypedConstraint* constraint = m_constraints[i];
const btRigidBody* colObj0 = &constraint->getRigidBodyA();
const btRigidBody* colObj1 = &constraint->getRigidBodyB();
if (((colObj0) && ((colObj0)->mergesSimulationIslands())) &&
((colObj1) && ((colObj1)->mergesSimulationIslands())))
{
if (colObj0->IsActive() || colObj1->IsActive())
{
getSimulationIslandManager()->getUnionFind().unite((colObj0)->m_islandTag1,
(colObj1)->m_islandTag1);
}
}
}
}
//Store the island id in each body
getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld());
END_PROFILE("calculateSimulationIslands");
}
static void DrawAabb(btIDebugDraw* debugDrawer,const btVector3& from,const btVector3& to,const btVector3& color)
{
btVector3 halfExtents = (to-from)* 0.5f;
btVector3 center = (to+from) *0.5f;
int i,j;
btVector3 edgecoord(1.f,1.f,1.f),pa,pb;
for (i=0;i<4;i++)
{
for (j=0;j<3;j++)
{
pa = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pa+=center;
int othercoord = j%3;
edgecoord[othercoord]*=-1.f;
pb = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pb+=center;
debugDrawer->drawLine(pa,pb,color);
}
edgecoord = btVector3(-1.f,-1.f,-1.f);
if (i<3)
edgecoord[i]*=-1.f;
}
}
void btDiscreteDynamicsWorld::updateAabbs()
{
BEGIN_PROFILE("updateAabbs");
btVector3 colorvec(1,0,0);
btTransform predictedTrans;
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
// if (body->IsActive() && (!body->IsStatic()))
{
btPoint3 minAabb,maxAabb;
colObj->m_collisionShape->getAabb(colObj->m_worldTransform, minAabb,maxAabb);
btSimpleBroadphase* bp = (btSimpleBroadphase*)m_broadphasePairCache;
if ( colObj->m_collisionShape->isInfinite() || ((maxAabb-minAabb).length2() < 1e12f))
{
bp->setAabb(body->m_broadphaseHandle,minAabb,maxAabb);
} else
{
//something went wrong, investigate
//this assert is unwanted in 3D modelers (danger of loosing work)
assert(0);
body->SetActivationState(DISABLE_SIMULATION);
static bool reportMe = true;
if (reportMe)
{
reportMe = false;
printf("Overflow in AABB, object removed from simulation \n");
printf("If you can reproduce this, please email bugs@continuousphysics.com\n");
printf("Please include above information, your Platform, version of OS.\n");
printf("Thanks.\n");
}
}
if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
{
DrawAabb(m_debugDrawer,minAabb,maxAabb,colorvec);
}
}
}
}
END_PROFILE("updateAabbs");
}
void btDiscreteDynamicsWorld::integrateTransforms(float timeStep)
{
BEGIN_PROFILE("integrateTransforms");
btTransform predictedTrans;
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
if (body->IsActive() && (!body->isStaticOrKinematicObject()))
{
body->predictIntegratedTransform(timeStep, predictedTrans);
body->proceedToTransform( predictedTrans);
}
}
}
END_PROFILE("integrateTransforms");
}
void btDiscreteDynamicsWorld::predictUnconstraintMotion(float timeStep)
{
BEGIN_PROFILE("predictUnconstraintMotion");
for (unsigned int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
{
if (!body->isStaticOrKinematicObject())
{
if (body->IsActive())
{
body->applyForces( timeStep);
body->integrateVelocities( timeStep);
body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform);
}
}
}
}
END_PROFILE("predictUnconstraintMotion");
}
void btDiscreteDynamicsWorld::startProfiling(float timeStep)
{
#ifdef USE_QUICKPROF
//toggle btProfiler
if ( m_debugDrawer && m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_ProfileTimings)
{
if (!m_profileTimings)
{
m_profileTimings = 1;
// To disable profiling, simply comment out the following line.
static int counter = 0;
char filename[128];
sprintf(filename,"quickprof_bullet_timings%i.csv",counter++);
btProfiler::init(filename, btProfiler::BLOCK_CYCLE_SECONDS);//BLOCK_TOTAL_MICROSECONDS
} else
{
btProfiler::endProfilingCycle();
}
} else
{
if (m_profileTimings)
{
btProfiler::endProfilingCycle();
m_profileTimings = 0;
btProfiler::destroy();
}
}
#endif //USE_QUICKPROF
}
class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
{
btIDebugDraw* m_debugDrawer;
btVector3 m_color;
btTransform m_worldTrans;
public:
DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color)
: m_debugDrawer(debugDrawer),
m_worldTrans(worldTrans),
m_color(color)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
processTriangle(triangle,partId,triangleIndex);
}
virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex)
{
btVector3 wv0,wv1,wv2;
wv0 = m_worldTrans*triangle[0];
wv1 = m_worldTrans*triangle[1];
wv2 = m_worldTrans*triangle[2];
m_debugDrawer->drawLine(wv0,wv1,m_color);
m_debugDrawer->drawLine(wv1,wv2,m_color);
m_debugDrawer->drawLine(wv2,wv0,m_color);
}
};
void btDiscreteDynamicsWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
{
if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
{
btTransform childTrans = compoundShape->getChildTransform(i);
const btCollisionShape* colShape = compoundShape->getChildShape(i);
debugDrawObject(worldTransform*childTrans,colShape,color);
}
} else
{
switch (shape->getShapeType())
{
case SPHERE_SHAPE_PROXYTYPE:
{
const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
float radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin
btVector3 start = worldTransform.getOrigin();
getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(radius,0,0),color);
getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(0,radius,0),color);
getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(0,0,radius),color);
//drawSphere
break;
}
case MULTI_SPHERE_SHAPE_PROXYTYPE:
case CONE_SHAPE_PROXYTYPE:
{
const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
float radius = coneShape->getRadius();//+coneShape->getMargin();
float height = coneShape->getHeight();//+coneShape->getMargin();
btVector3 start = worldTransform.getOrigin();
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0,0,0.5*height),start+worldTransform.getBasis() * btVector3(radius,0,-0.5*height),color);
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0,0,0.5*height),start+worldTransform.getBasis() * btVector3(-radius,0,-0.5*height),color);
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0,0,0.5*height),start+worldTransform.getBasis() * btVector3(0,radius,-0.5*height),color);
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0,0,0.5*height),start+worldTransform.getBasis() * btVector3(0,-radius,-0.5*height),color);
break;
}
case CYLINDER_SHAPE_PROXYTYPE:
{
const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
int upAxis = cylinder->getUpAxis();
float radius = cylinder->getRadius();
float halfHeight = cylinder->getHalfExtents()[upAxis];
btVector3 start = worldTransform.getOrigin();
btVector3 offsetHeight(0,0,0);
offsetHeight[upAxis] = halfHeight;
btVector3 offsetRadius(0,0,0);
offsetRadius[(upAxis+1)%3] = radius;
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight+offsetRadius),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color);
getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight-offsetRadius),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color);
break;
}
default:
{
if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btTriangleMeshShape* concaveMesh = (btTriangleMeshShape*) shape;
//btVector3 aabbMax(1e30f,1e30f,1e30f);
//btVector3 aabbMax(100,100,100);//1e30f,1e30f,1e30f);
//todo pass camera, for some culling
btVector3 aabbMax(1e30f,1e30f,1e30f);
btVector3 aabbMin(-1e30f,-1e30f,-1e30f);
DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color);
concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax);
}
if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
{
btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape;
//todo: pass camera for some culling
btVector3 aabbMax(1e30f,1e30f,1e30f);
btVector3 aabbMin(-1e30f,-1e30f,-1e30f);
//DebugDrawcallback drawCallback;
DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color);
convexMesh->getStridingMesh()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax);
}
/// for polyhedral shapes
if (shape->isPolyhedral())
{
btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape;
int i;
for (i=0;i<polyshape->getNumEdges();i++)
{
btPoint3 a,b;
polyshape->getEdge(i,a,b);
btVector3 wa = worldTransform * a;
btVector3 wb = worldTransform * b;
getDebugDrawer()->drawLine(wa,wb,color);
}
}
}
}
}
}