138 lines
4.9 KiB
C
138 lines
4.9 KiB
C
/* exp2f4
|
|
Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Sony Computer Entertainment Inc nor the names
|
|
of its contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef ___SIMD_MATH_EXP2F4_H___
|
|
#define ___SIMD_MATH_EXP2F4_H___
|
|
|
|
#include <simdmath.h>
|
|
#include <altivec.h>
|
|
#include <math.h>
|
|
|
|
#include <simdmath/_vec_utils.h>
|
|
|
|
/*
|
|
* FUNCTION
|
|
* vector float _exp2_v(vector float x)
|
|
*
|
|
* DESCRIPTION
|
|
* _exp2_v computes 2 raised to the input vector x. Computation is
|
|
* performed by observing the 2^(a+b) = 2^a * 2^b.
|
|
* We decompose x into a and b (above) by letting.
|
|
* a = ceil(x), b = x - a;
|
|
*
|
|
* 2^a is easilty computed by placing a into the exponent
|
|
* or a floating point number whose mantissa is all zeros.
|
|
*
|
|
* 2^b is computed using the following polynomial approximation.
|
|
* (C. Hastings, Jr, 1955).
|
|
*
|
|
* __7__
|
|
* \
|
|
* \
|
|
* 2^(-x) = / Ci*x^i
|
|
* /____
|
|
* i=1
|
|
*
|
|
* for x in the range 0.0 to 1.0
|
|
*
|
|
* C0 = 1.0
|
|
* C1 = -0.9999999995
|
|
* C2 = 0.4999999206
|
|
* C3 = -0.1666653019
|
|
* C4 = 0.0416573475
|
|
* C5 = -0.0083013598
|
|
* C6 = 0.0013298820
|
|
* C7 = -0.0001413161
|
|
*
|
|
* This function does not handle out of range conditions. It
|
|
* assumes that x is in the range (-128.0, 127.0]. Values outside
|
|
* this range will produce undefined results.
|
|
*/
|
|
|
|
|
|
#define __EXP2F_LN2 0.69314718055995f /* ln(2) */
|
|
|
|
static inline vector float
|
|
_exp2f4 (vector float x)
|
|
{
|
|
vector signed int ix;
|
|
vector unsigned int overflow;
|
|
vector unsigned int underflow;
|
|
vector float frac, frac2, frac4;
|
|
vector float exp_int, exp_frac;
|
|
vector float result;
|
|
vector float hi, lo;
|
|
vector float zeros = __vec_splatsf4(0.0f);
|
|
vector float bias;
|
|
/* Break in the input x into two parts ceil(x), x - ceil(x).
|
|
*/
|
|
#if 1
|
|
bias = (vector float)(vec_sra((vector signed int)x, __vec_splatsu4(31) ));
|
|
bias = (vector float)(vec_andc(__vec_splatsu4(0x3F7FFFFF), (vector unsigned int)bias));
|
|
ix = vec_cts(vec_add(x, bias), 0);
|
|
#else
|
|
bias = vec_sel(vec_floor(x), vec_ceil(x), vec_cmpgt(x, __vec_splatsf4(0.0f)));
|
|
ix = vec_cts(bias, 0);
|
|
#endif
|
|
frac = vec_sub(vec_ctf(ix, 0), x);
|
|
frac = vec_madd(frac, __vec_splatsf4(__EXP2F_LN2), zeros);
|
|
|
|
overflow = (vector unsigned int)vec_cmpgt(x, (vector float)(__vec_splatsi4(0x4300FFFF))); // !!! Biggest possible exponent to fit in range.
|
|
underflow = (vector unsigned int)vec_cmpgt(__vec_splatsf4(-126.0f), x);
|
|
|
|
exp_int = (vector float)(vec_sl(vec_add(ix, __vec_splatsi4(126)), __vec_splatsu4(23))); // !!! HRD <- add with saturation
|
|
|
|
/* Instruction counts can be reduced if the polynomial was
|
|
* computed entirely from nested (dependent) fma's. However,
|
|
* to reduce the number of pipeline stalls, the polygon is evaluated
|
|
* in two halves (hi amd lo).
|
|
*/
|
|
frac2 = vec_madd(frac, frac, zeros);
|
|
frac4 = vec_madd(frac2, frac2, zeros);
|
|
|
|
hi = vec_madd(frac, __vec_splatsf4(-0.0001413161), __vec_splatsf4(0.0013298820));
|
|
hi = vec_madd(frac, hi, __vec_splatsf4(-0.0083013598));
|
|
hi = vec_madd(frac, hi, __vec_splatsf4(0.0416573475));
|
|
lo = vec_madd(frac, __vec_splatsf4(-0.1666653019), __vec_splatsf4(0.4999999206));
|
|
lo = vec_madd(frac, lo, __vec_splatsf4(-0.9999999995));
|
|
lo = vec_madd(frac, lo, __vec_splatsf4(1.0));
|
|
|
|
exp_frac = vec_madd(frac4, hi, lo);
|
|
result = vec_madd(exp_frac, exp_int, zeros);
|
|
result = vec_madd(exp_frac, exp_int, result); // !!! HRD
|
|
|
|
/* Handle overflow */
|
|
result = vec_sel(result, __vec_splatsf4(HUGE_VALF), overflow);
|
|
result = vec_sel(result, zeros, underflow);
|
|
|
|
return (result);
|
|
}
|
|
|
|
#endif
|