Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
547 lines
20 KiB
C++
547 lines
20 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_REAL_SCHUR_H
|
|
#define EIGEN_REAL_SCHUR_H
|
|
|
|
#include "./HessenbergDecomposition.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \class RealSchur
|
|
*
|
|
* \brief Performs a real Schur decomposition of a square matrix
|
|
*
|
|
* \tparam _MatrixType the type of the matrix of which we are computing the
|
|
* real Schur decomposition; this is expected to be an instantiation of the
|
|
* Matrix class template.
|
|
*
|
|
* Given a real square matrix A, this class computes the real Schur
|
|
* decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
|
|
* T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
|
|
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
|
|
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
|
|
* blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
|
|
* blocks on the diagonal of T are the same as the eigenvalues of the matrix
|
|
* A, and thus the real Schur decomposition is used in EigenSolver to compute
|
|
* the eigendecomposition of a matrix.
|
|
*
|
|
* Call the function compute() to compute the real Schur decomposition of a
|
|
* given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
|
|
* constructor which computes the real Schur decomposition at construction
|
|
* time. Once the decomposition is computed, you can use the matrixU() and
|
|
* matrixT() functions to retrieve the matrices U and T in the decomposition.
|
|
*
|
|
* The documentation of RealSchur(const MatrixType&, bool) contains an example
|
|
* of the typical use of this class.
|
|
*
|
|
* \note The implementation is adapted from
|
|
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
|
* Their code is based on EISPACK.
|
|
*
|
|
* \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
|
*/
|
|
template<typename _MatrixType> class RealSchur
|
|
{
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
|
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
|
|
|
/** \brief Default constructor.
|
|
*
|
|
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via compute(). The \p size parameter is only
|
|
* used as a hint. It is not an error to give a wrong \p size, but it may
|
|
* impair performance.
|
|
*
|
|
* \sa compute() for an example.
|
|
*/
|
|
explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
|
: m_matT(size, size),
|
|
m_matU(size, size),
|
|
m_workspaceVector(size),
|
|
m_hess(size),
|
|
m_isInitialized(false),
|
|
m_matUisUptodate(false),
|
|
m_maxIters(-1)
|
|
{ }
|
|
|
|
/** \brief Constructor; computes real Schur decomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
|
*
|
|
* This constructor calls compute() to compute the Schur decomposition.
|
|
*
|
|
* Example: \include RealSchur_RealSchur_MatrixType.cpp
|
|
* Output: \verbinclude RealSchur_RealSchur_MatrixType.out
|
|
*/
|
|
template<typename InputType>
|
|
explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
|
|
: m_matT(matrix.rows(),matrix.cols()),
|
|
m_matU(matrix.rows(),matrix.cols()),
|
|
m_workspaceVector(matrix.rows()),
|
|
m_hess(matrix.rows()),
|
|
m_isInitialized(false),
|
|
m_matUisUptodate(false),
|
|
m_maxIters(-1)
|
|
{
|
|
compute(matrix.derived(), computeU);
|
|
}
|
|
|
|
/** \brief Returns the orthogonal matrix in the Schur decomposition.
|
|
*
|
|
* \returns A const reference to the matrix U.
|
|
*
|
|
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
|
* member function compute(const MatrixType&, bool) has been called before
|
|
* to compute the Schur decomposition of a matrix, and \p computeU was set
|
|
* to true (the default value).
|
|
*
|
|
* \sa RealSchur(const MatrixType&, bool) for an example
|
|
*/
|
|
const MatrixType& matrixU() const
|
|
{
|
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
|
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
|
|
return m_matU;
|
|
}
|
|
|
|
/** \brief Returns the quasi-triangular matrix in the Schur decomposition.
|
|
*
|
|
* \returns A const reference to the matrix T.
|
|
*
|
|
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
|
* member function compute(const MatrixType&, bool) has been called before
|
|
* to compute the Schur decomposition of a matrix.
|
|
*
|
|
* \sa RealSchur(const MatrixType&, bool) for an example
|
|
*/
|
|
const MatrixType& matrixT() const
|
|
{
|
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
|
return m_matT;
|
|
}
|
|
|
|
/** \brief Computes Schur decomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
|
* \returns Reference to \c *this
|
|
*
|
|
* The Schur decomposition is computed by first reducing the matrix to
|
|
* Hessenberg form using the class HessenbergDecomposition. The Hessenberg
|
|
* matrix is then reduced to triangular form by performing Francis QR
|
|
* iterations with implicit double shift. The cost of computing the Schur
|
|
* decomposition depends on the number of iterations; as a rough guide, it
|
|
* may be taken to be \f$25n^3\f$ flops if \a computeU is true and
|
|
* \f$10n^3\f$ flops if \a computeU is false.
|
|
*
|
|
* Example: \include RealSchur_compute.cpp
|
|
* Output: \verbinclude RealSchur_compute.out
|
|
*
|
|
* \sa compute(const MatrixType&, bool, Index)
|
|
*/
|
|
template<typename InputType>
|
|
RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
|
|
|
|
/** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
|
|
* \param[in] matrixH Matrix in Hessenberg form H
|
|
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
|
* \param computeU Computes the matriX U of the Schur vectors
|
|
* \return Reference to \c *this
|
|
*
|
|
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
|
* using either the class HessenbergDecomposition or another mean.
|
|
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
|
* When computeU is true, this routine computes the matrix U such that
|
|
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
|
*
|
|
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
|
* is not available, the user should give an identity matrix (Q.setIdentity())
|
|
*
|
|
* \sa compute(const MatrixType&, bool)
|
|
*/
|
|
template<typename HessMatrixType, typename OrthMatrixType>
|
|
RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
|
*/
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
/** \brief Sets the maximum number of iterations allowed.
|
|
*
|
|
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
|
* of the matrix.
|
|
*/
|
|
RealSchur& setMaxIterations(Index maxIters)
|
|
{
|
|
m_maxIters = maxIters;
|
|
return *this;
|
|
}
|
|
|
|
/** \brief Returns the maximum number of iterations. */
|
|
Index getMaxIterations()
|
|
{
|
|
return m_maxIters;
|
|
}
|
|
|
|
/** \brief Maximum number of iterations per row.
|
|
*
|
|
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
|
* matrix. It is currently set to 40.
|
|
*/
|
|
static const int m_maxIterationsPerRow = 40;
|
|
|
|
private:
|
|
|
|
MatrixType m_matT;
|
|
MatrixType m_matU;
|
|
ColumnVectorType m_workspaceVector;
|
|
HessenbergDecomposition<MatrixType> m_hess;
|
|
ComputationInfo m_info;
|
|
bool m_isInitialized;
|
|
bool m_matUisUptodate;
|
|
Index m_maxIters;
|
|
|
|
typedef Matrix<Scalar,3,1> Vector3s;
|
|
|
|
Scalar computeNormOfT();
|
|
Index findSmallSubdiagEntry(Index iu);
|
|
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
|
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
|
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
|
void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
|
|
};
|
|
|
|
|
|
template<typename MatrixType>
|
|
template<typename InputType>
|
|
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
|
|
{
|
|
const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
|
|
|
|
eigen_assert(matrix.cols() == matrix.rows());
|
|
Index maxIters = m_maxIters;
|
|
if (maxIters == -1)
|
|
maxIters = m_maxIterationsPerRow * matrix.rows();
|
|
|
|
Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
|
|
if(scale<considerAsZero)
|
|
{
|
|
m_matT.setZero(matrix.rows(),matrix.cols());
|
|
if(computeU)
|
|
m_matU.setIdentity(matrix.rows(),matrix.cols());
|
|
m_info = Success;
|
|
m_isInitialized = true;
|
|
m_matUisUptodate = computeU;
|
|
return *this;
|
|
}
|
|
|
|
// Step 1. Reduce to Hessenberg form
|
|
m_hess.compute(matrix.derived()/scale);
|
|
|
|
// Step 2. Reduce to real Schur form
|
|
computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
|
|
|
m_matT *= scale;
|
|
|
|
return *this;
|
|
}
|
|
template<typename MatrixType>
|
|
template<typename HessMatrixType, typename OrthMatrixType>
|
|
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
|
{
|
|
using std::abs;
|
|
|
|
m_matT = matrixH;
|
|
if(computeU)
|
|
m_matU = matrixQ;
|
|
|
|
Index maxIters = m_maxIters;
|
|
if (maxIters == -1)
|
|
maxIters = m_maxIterationsPerRow * matrixH.rows();
|
|
m_workspaceVector.resize(m_matT.cols());
|
|
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
|
|
|
// The matrix m_matT is divided in three parts.
|
|
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
|
// Rows il,...,iu is the part we are working on (the active window).
|
|
// Rows iu+1,...,end are already brought in triangular form.
|
|
Index iu = m_matT.cols() - 1;
|
|
Index iter = 0; // iteration count for current eigenvalue
|
|
Index totalIter = 0; // iteration count for whole matrix
|
|
Scalar exshift(0); // sum of exceptional shifts
|
|
Scalar norm = computeNormOfT();
|
|
|
|
if(norm!=0)
|
|
{
|
|
while (iu >= 0)
|
|
{
|
|
Index il = findSmallSubdiagEntry(iu);
|
|
|
|
// Check for convergence
|
|
if (il == iu) // One root found
|
|
{
|
|
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
|
if (iu > 0)
|
|
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
|
iu--;
|
|
iter = 0;
|
|
}
|
|
else if (il == iu-1) // Two roots found
|
|
{
|
|
splitOffTwoRows(iu, computeU, exshift);
|
|
iu -= 2;
|
|
iter = 0;
|
|
}
|
|
else // No convergence yet
|
|
{
|
|
// The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
|
|
Vector3s firstHouseholderVector(0,0,0), shiftInfo;
|
|
computeShift(iu, iter, exshift, shiftInfo);
|
|
iter = iter + 1;
|
|
totalIter = totalIter + 1;
|
|
if (totalIter > maxIters) break;
|
|
Index im;
|
|
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
|
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
|
}
|
|
}
|
|
}
|
|
if(totalIter <= maxIters)
|
|
m_info = Success;
|
|
else
|
|
m_info = NoConvergence;
|
|
|
|
m_isInitialized = true;
|
|
m_matUisUptodate = computeU;
|
|
return *this;
|
|
}
|
|
|
|
/** \internal Computes and returns vector L1 norm of T */
|
|
template<typename MatrixType>
|
|
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|
{
|
|
const Index size = m_matT.cols();
|
|
// FIXME to be efficient the following would requires a triangular reduxion code
|
|
// Scalar norm = m_matT.upper().cwiseAbs().sum()
|
|
// + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
|
|
Scalar norm(0);
|
|
for (Index j = 0; j < size; ++j)
|
|
norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
|
|
return norm;
|
|
}
|
|
|
|
/** \internal Look for single small sub-diagonal element and returns its index */
|
|
template<typename MatrixType>
|
|
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
|
{
|
|
using std::abs;
|
|
Index res = iu;
|
|
while (res > 0)
|
|
{
|
|
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
|
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
|
break;
|
|
res--;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
|
|
template<typename MatrixType>
|
|
inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
const Index size = m_matT.cols();
|
|
|
|
// The eigenvalues of the 2x2 matrix [a b; c d] are
|
|
// trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
|
|
Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
|
|
Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
|
|
m_matT.coeffRef(iu,iu) += exshift;
|
|
m_matT.coeffRef(iu-1,iu-1) += exshift;
|
|
|
|
if (q >= Scalar(0)) // Two real eigenvalues
|
|
{
|
|
Scalar z = sqrt(abs(q));
|
|
JacobiRotation<Scalar> rot;
|
|
if (p >= Scalar(0))
|
|
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
|
|
else
|
|
rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
|
|
|
|
m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
|
|
m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
|
|
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
|
if (computeU)
|
|
m_matU.applyOnTheRight(iu-1, iu, rot);
|
|
}
|
|
|
|
if (iu > 1)
|
|
m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
|
|
}
|
|
|
|
/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
|
|
template<typename MatrixType>
|
|
inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
|
|
shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
|
|
shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
|
|
|
// Wilkinson's original ad hoc shift
|
|
if (iter == 10)
|
|
{
|
|
exshift += shiftInfo.coeff(0);
|
|
for (Index i = 0; i <= iu; ++i)
|
|
m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
|
|
Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
|
|
shiftInfo.coeffRef(0) = Scalar(0.75) * s;
|
|
shiftInfo.coeffRef(1) = Scalar(0.75) * s;
|
|
shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
|
|
}
|
|
|
|
// MATLAB's new ad hoc shift
|
|
if (iter == 30)
|
|
{
|
|
Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
|
s = s * s + shiftInfo.coeff(2);
|
|
if (s > Scalar(0))
|
|
{
|
|
s = sqrt(s);
|
|
if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
|
|
s = -s;
|
|
s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
|
s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
|
|
exshift += s;
|
|
for (Index i = 0; i <= iu; ++i)
|
|
m_matT.coeffRef(i,i) -= s;
|
|
shiftInfo.setConstant(Scalar(0.964));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
|
|
template<typename MatrixType>
|
|
inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
|
|
{
|
|
using std::abs;
|
|
Vector3s& v = firstHouseholderVector; // alias to save typing
|
|
|
|
for (im = iu-2; im >= il; --im)
|
|
{
|
|
const Scalar Tmm = m_matT.coeff(im,im);
|
|
const Scalar r = shiftInfo.coeff(0) - Tmm;
|
|
const Scalar s = shiftInfo.coeff(1) - Tmm;
|
|
v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
|
|
v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
|
|
v.coeffRef(2) = m_matT.coeff(im+2,im+1);
|
|
if (im == il) {
|
|
break;
|
|
}
|
|
const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
|
|
const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
|
|
if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
|
|
template<typename MatrixType>
|
|
inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
|
|
{
|
|
eigen_assert(im >= il);
|
|
eigen_assert(im <= iu-2);
|
|
|
|
const Index size = m_matT.cols();
|
|
|
|
for (Index k = im; k <= iu-2; ++k)
|
|
{
|
|
bool firstIteration = (k == im);
|
|
|
|
Vector3s v;
|
|
if (firstIteration)
|
|
v = firstHouseholderVector;
|
|
else
|
|
v = m_matT.template block<3,1>(k,k-1);
|
|
|
|
Scalar tau, beta;
|
|
Matrix<Scalar, 2, 1> ess;
|
|
v.makeHouseholder(ess, tau, beta);
|
|
|
|
if (beta != Scalar(0)) // if v is not zero
|
|
{
|
|
if (firstIteration && k > il)
|
|
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
|
else if (!firstIteration)
|
|
m_matT.coeffRef(k,k-1) = beta;
|
|
|
|
// These Householder transformations form the O(n^3) part of the algorithm
|
|
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
|
|
m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
|
if (computeU)
|
|
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
|
}
|
|
}
|
|
|
|
Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
|
|
Scalar tau, beta;
|
|
Matrix<Scalar, 1, 1> ess;
|
|
v.makeHouseholder(ess, tau, beta);
|
|
|
|
if (beta != Scalar(0)) // if v is not zero
|
|
{
|
|
m_matT.coeffRef(iu-1, iu-2) = beta;
|
|
m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
|
|
m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
|
if (computeU)
|
|
m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
|
}
|
|
|
|
// clean up pollution due to round-off errors
|
|
for (Index i = im+2; i <= iu; ++i)
|
|
{
|
|
m_matT.coeffRef(i,i-2) = Scalar(0);
|
|
if (i > im+2)
|
|
m_matT.coeffRef(i,i-3) = Scalar(0);
|
|
}
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_REAL_SCHUR_H
|