Files
bullet3/examples/pybullet/gym/pybullet_envs/bullet/kukaGymEnv.py
Erwin Coumans c250a5f0b9 re-enable shared memory connection for pybullet Gym envs (with fallback to GUI or DIRECT)
suppress shared memory connection warnings
add fallback from ER_BULLET_HARDWARE_OPENGL to TinyRenderer if not available
2017-09-13 09:56:39 -07:00

186 lines
5.6 KiB
Python

import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
print ("current_dir=" + currentdir)
os.sys.path.insert(0,currentdir)
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
import pybullet_data
class KukaGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=1,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self.terminated = 0
self._p = p
if self._renders:
cid = p.connect(p.SHARED_MEMORY)
if (cid<0):
cid = p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33])
else:
p.connect(p.DIRECT)
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(7)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
print("reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
p.setTimeStep(self._timeStep)
p.loadURDF(os.path.join(self._urdfRoot,"plane.urdf"),[0,0,-1])
p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.5 +0.05*random.random()
ypos = 0 +0.05*random.random()
ang = 3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
eeState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
endEffectorPos = eeState[0]
endEffectorOrn = eeState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invEEPos,invEEOrn = p.invertTransform(endEffectorPos,endEffectorOrn)
blockPosInEE,blockOrnInEE = p.multiplyTransforms(invEEPos,invEEOrn,blockPos,blockOrn)
blockEulerInEE = p.getEulerFromQuaternion(blockOrnInEE)
self._observation.extend(list(blockPosInEE))
self._observation.extend(list(blockEulerInEE))
return self._observation
def _step(self, action):
dv = 0.01
dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.1,0.1][action]
f = 0.3
realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction)
def step2(self, action):
self._kuka.applyAction(action)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
reward = self._reward()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
#print (self._kuka.endEffectorPos[2])
state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter>1000):
self._observation = self.getExtendedObservation()
return True
if (actualEndEffectorPos[2] <= 0.10):
self.terminated = 1
#print("closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range (1000):
graspAction = [0,0,0.001,0,fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
fingerAngle = fingerAngle-(0.3/100.)
if (fingerAngle<0):
fingerAngle=0
self._observation = self.getExtendedObservation()
return True
return False
def _reward(self):
#rewards is height of target object
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000)
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2):
print("grasped a block!!!")
print("self._envStepCounter")
print(self._envStepCounter)
reward = reward+1000
#print("reward")
#print(reward)
return reward