Files
bullet3/Demos3/Geometry/DistributePoints.h
erwin coumans 548fe5b04e fix crash in BasicDemo
add small experiments to distribute points on a sphere
prepare for coordinate frame demo (incomplete)
fix/hack around gwen update of scroll bars and Focu
2014-12-16 14:27:38 -08:00

309 lines
9.0 KiB
C++

#ifndef DISTRIBUTE_POINTS_H
#define DISTRIBUTE_POINTS_H
#include "Bullet3AppSupport/BulletDemoInterface.h"
#include "OpenGLWindow/CommonGraphicsApp.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
#include "btBulletDynamicsCommon.h"
inline btScalar randRange(btScalar minRange, btScalar maxRange)
{
return (rand() / (btScalar(RAND_MAX) + btScalar(1.0))) * (maxRange - minRange) + minRange;
}
void myCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo)
{
if (1)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
btRigidBody* body0 = btRigidBody::upcast(colObj0);
btRigidBody* body1 = btRigidBody::upcast(colObj1);
if (body0 && body1)
{
btVector3 vec = body1->getWorldTransform().getOrigin()-body0->getWorldTransform().getOrigin();
vec.safeNormalize();
//add a small 'random' direction to avoid getting stuck in a plane
//vec += 0.00001*btVector3(randRange(0,1),randRange(0,1),randRange(0,1));
//magnitude: 1./vec.length1();
btScalar l = vec.length();
btScalar mag = 1.1/(l*l*l);
body0->applyImpulse(-mag*vec,btVector3(0,0,0));
body1->applyImpulse(mag*vec,btVector3(0,0,0));
}
} else
{
btCollisionDispatcher::defaultNearCallback(collisionPair,dispatcher,dispatchInfo);
}
}
class DistributePoints : public BulletDemoInterface
{
CommonGraphicsApp* m_app;
float m_x;
float m_y;
btDefaultCollisionConfiguration* m_collisionConfiguration;
btCollisionDispatcher* m_dispatcher;
btDiscreteDynamicsWorld* m_dynamicsWorld;
btDbvtBroadphase* m_broadphase;
btSequentialImpulseConstraintSolver* m_solver;
public:
DistributePoints(CommonGraphicsApp* app)
:m_app(app),
m_x(0),
m_y(0)
{
m_app->setUpAxis(1);
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dispatcher->setNearCallback(myCallback);
}
virtual ~DistributePoints()
{
delete m_dynamicsWorld;
delete m_solver;
delete m_broadphase;
delete m_dispatcher;
delete m_collisionConfiguration;
}
static BulletDemoInterface* CreateFunc(CommonGraphicsApp* app)
{
return new DistributePoints(app);
}
inline btScalar randRange(btScalar minRange, btScalar maxRange)
{
return (rand() / (btScalar(RAND_MAX) + btScalar(1.0))) * (maxRange - minRange) + minRange;
}
virtual void initPhysics()
{
//create spheres, attached with point to point constraint
//use a collision callback, apply forces
btScalar radius = 0.01;
btSphereShape* sphere = new btSphereShape(1);
int sphereId = m_app->registerGraphicsSphereShape(radius,false);
for (int i=0;i<256;i++)
{
btScalar mass =1.f;
btVector3 localInertia;
sphere->calculateLocalInertia(mass,localInertia);
btRigidBody::btRigidBodyConstructionInfo ci(mass,0,sphere,localInertia);
ci.m_startWorldTransform.setIdentity();
btVector3 center(randRange(-1,1),randRange(-1,1),randRange(-1,1));
center.normalize();
ci.m_startWorldTransform.setOrigin(center);
btRigidBody* body = new btRigidBody(ci);
const btVector3& pos = body->getWorldTransform().getOrigin();
btQuaternion orn = body->getWorldTransform().getRotation();
btVector4 color(1,0,0,1);
btVector3 scaling(radius,radius,radius);
int instanceId = m_app->m_renderer->registerGraphicsInstance(sphereId,pos,orn,color,scaling);
body->setUserIndex(instanceId);
m_dynamicsWorld->addRigidBody(body);
btVector3 pivotInA = -body->getWorldTransform().getOrigin();
btVector3 pivotInB(0,0,0);
// btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, btTypedConstraint::getFixedBody(),pivotInA,pivotInB);
// m_dynamicsWorld->addConstraint(p2p);
body->setActivationState(DISABLE_DEACTIVATION);
}
m_dynamicsWorld->setGravity(btVector3(0,0,0));
m_app->m_renderer->writeTransforms();
}
virtual void exitPhysics()
{
}
virtual void stepSimulation(float deltaTime)
{
m_dynamicsWorld->stepSimulation(1./60.,0);
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btRigidBody* body = btRigidBody::upcast(m_dynamicsWorld->getCollisionObjectArray()[i]);
if (body && body->getUserIndex()>=0)
{
btTransform pos = body->getWorldTransform();
pos.setOrigin(pos.getOrigin().normalized());
body->setWorldTransform(pos);
body->setAngularVelocity(btVector3(0,0,0));
body->setLinearVelocity(btVector3(0,0,0));
}
}
}
virtual void renderScene()
{
//sync transforms
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btRigidBody* body = btRigidBody::upcast(m_dynamicsWorld->getCollisionObjectArray()[i]);
if (body && body->getUserIndex()>=0)
{
const btVector3& pos = body->getWorldTransform().getOrigin();
btQuaternion orn = body->getWorldTransform().getRotation();
m_app->m_renderer->writeSingleInstanceTransformToCPU(pos,orn,body->getUserIndex());
}
}
m_app->m_renderer->writeTransforms();
m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw()
{
int lineWidth = 1;
int pointSize = 2;
btAlignedObjectArray<btVector3> m_vertices;
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btRigidBody* body = btRigidBody::upcast(m_dynamicsWorld->getCollisionObjectArray()[i]);
if (body && body->getUserIndex()>=0)
{
btTransform pos = body->getWorldTransform();
m_vertices.push_back(pos.getOrigin());
}
}
btConvexHullShape* m_convexHull = new btConvexHullShape(&m_vertices[0].x(),m_vertices.size(),sizeof(btVector3));
m_convexHull->initializePolyhedralFeatures();
const btConvexPolyhedron* poly = m_convexHull->getConvexPolyhedron();
btScalar averageEdgeLength = 0.f;
btScalar numLengths=0;
for (int p=0;p<poly->m_faces.size();p++)
{
for (int f=2;f<poly->m_faces[p].m_indices.size();f++)
{
btVector4 color0(0,0,1,1);
btVector4 color1(0,0,1,1);
btVector4 color2(0,0,1,1);
int index0=poly->m_faces[p].m_indices[f-2];
int index1=poly->m_faces[p].m_indices[f-1];
int index2=poly->m_faces[p].m_indices[f];
btVector3 v0 = poly->m_vertices[index0];
btVector3 v1 = poly->m_vertices[index1];
btVector3 v2 = poly->m_vertices[index2];
btVector3 e0 = v1-v0;
btVector3 e1 = v2-v1;
btVector3 e2 = v0-v2;
btScalar e0Length = e0.length();
btScalar e1Length = e1.length();
btScalar e2Length = e2.length();
averageEdgeLength+=e0Length;
averageEdgeLength+=e1Length;
averageEdgeLength+=e2Length;
numLengths+=3;
}
}
averageEdgeLength/=numLengths;
btScalar maxLengthDiff = 0.f;
for (int p=0;p<poly->m_faces.size();p++)
{
for (int f=2;f<poly->m_faces[p].m_indices.size();f++)
{
btVector4 color0(0,0,1,1);
btVector4 color1(0,0,1,1);
btVector4 color2(0,0,1,1);
int index0=poly->m_faces[p].m_indices[f-2];
int index1=poly->m_faces[p].m_indices[f-1];
int index2=poly->m_faces[p].m_indices[f];
btVector3 v0 = poly->m_vertices[index0];
btVector3 v1 = poly->m_vertices[index1];
btVector3 v2 = poly->m_vertices[index2];
btVector3 e0 = v1-v0;
btVector3 e1 = v2-v1;
btVector3 e2 = v0-v2;
btScalar e0LengthDiff = btFabs(averageEdgeLength-e0.length());
btScalar e1LengthDiff = btFabs(averageEdgeLength-e1.length());
btScalar e2LengthDiff = btFabs(averageEdgeLength-e2.length());
btSetMax(maxLengthDiff,e0LengthDiff);
btSetMax(maxLengthDiff,e1LengthDiff);
btSetMax(maxLengthDiff,e2LengthDiff);
m_app->m_renderer->drawLine(&v0.x(),
&v1.x(),
color0,lineWidth);
m_app->m_renderer->drawLine(&v1.x(),
&v2.x(),
color1,lineWidth);
m_app->m_renderer->drawLine(&v2.x(),
&v0.x(),
color2,lineWidth);
}
//printf("maxEdgeLength=%f\n",maxEdgeLength);
}
for (int i=0;i<poly->m_vertices.size();i++)
{
btVector4 color(1,0,0,1);
m_app->m_renderer->drawPoint(poly->m_vertices[i],color,pointSize);
}
delete m_convexHull;
char msg[1024];
btScalar targetDist = 2.0f*sqrtf(4.0f/(btScalar)m_vertices.size());
sprintf(msg,"average Edge Length = %f, maxLengthDiff = %f",averageEdgeLength,maxLengthDiff);
b3Printf(msg);
}
virtual bool mouseMoveCallback(float x,float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
};
#endif //DISTRIBUTE_POINTS_H