Files
bullet3/Demos3/ImportColladaDemo/LoadMeshFromCollada.cpp
erwin coumans 579b34d2e0 Added a basic COLLADA .dae importer mainly to support URDF loading (URDF can refer to COLLADA .dae or STL .stl for mesh support)
It is fairly limited, only supports loading <geometry> with triangulated meshes, no material loading
I will extend this with COLLADA Physics support.
2014-10-21 17:44:54 -07:00

549 lines
17 KiB
C++

/*
Bullet Collision Detection and Physics Library http://bulletphysics.org
This file is Copyright (c) 2014 Google Inc.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
//original author: Erwin Coumans
*/
#include "LoadMeshFromCollada.h"
#include <stdio.h> //fopen
#include "Bullet3Common/b3AlignedObjectArray.h"
#include <string>
#include "OpenGLWindow/OpenGLInclude.h"
#include "tinyxml/tinyxml.h"
#include "Bullet3Common/b3FileUtils.h"
#include "LinearMath/btHashMap.h"
#include <assert.h>
#include "btMatrix4x4.h"
struct VertexSource
{
std::string m_positionArrayId;
std::string m_normalArrayId;
};
struct TokenFloatArray
{
btAlignedObjectArray<float>& m_values;
TokenFloatArray(btAlignedObjectArray<float>& floatArray)
:m_values(floatArray) {
}
inline void add(const char* token)
{
float v = atof(token);
m_values.push_back(v);
}
};
struct TokenIntArray
{
btAlignedObjectArray<int>& m_values;
TokenIntArray(btAlignedObjectArray<int>& intArray)
:m_values(intArray) {
}
inline void add(const char* token)
{
float v = atoi(token);
m_values.push_back(v);
}
};
template <typename AddToken>
void tokenize(const std::string& str, AddToken& tokenAdder, const std::string& delimiters = " ")
{
std::string::size_type pos, lastPos = 0;
while(true)
{
pos = str.find_first_of(delimiters, lastPos);
if(pos == std::string::npos)
{
pos = str.length();
if(pos != lastPos)
{
tokenAdder.add(str.data()+lastPos);
}
break;
}
else
{
if(pos != lastPos)
{
tokenAdder.add(str.data()+lastPos);
}
}
lastPos = pos + 1;
}
}
void readFloatArray(TiXmlElement* source, btAlignedObjectArray<float>& floatArray, int& componentStride)
{
int numVals, stride;
TiXmlElement* array = source->FirstChildElement("float_array");
if(array)
{
componentStride = 1;
if (source->FirstChildElement("technique_common")->FirstChildElement("accessor")->QueryIntAttribute("stride", &stride)!= TIXML_NO_ATTRIBUTE)
{
componentStride = stride;
}
array->QueryIntAttribute("count", &numVals);
TokenFloatArray adder(floatArray);
floatArray.reserve(numVals);
tokenize(array->GetText(),adder);
assert(floatArray.size() == numVals);
}
}
btVector3 getVector3FromXmlText(const char* text)
{
btVector3 vec(0,0,0);
btAlignedObjectArray<float> floatArray;
TokenFloatArray adder(floatArray);
floatArray.reserve(3);
tokenize(text,adder);
assert(floatArray.size() == 3);
if (floatArray.size()==3)
{
vec.setValue(floatArray[0],floatArray[1],floatArray[2]);
}
return vec;
}
btVector4 getVector4FromXmlText(const char* text)
{
btVector4 vec(0,0,0,0);
btAlignedObjectArray<float> floatArray;
TokenFloatArray adder(floatArray);
floatArray.reserve(4);
tokenize(text,adder);
assert(floatArray.size() == 4);
if (floatArray.size()==4)
{
vec.setValue(floatArray[0],floatArray[1],floatArray[2],floatArray[3]);
}
return vec;
}
void readLibraryGeometries(TiXmlDocument& doc, btAlignedObjectArray<GLInstanceGraphicsShape>& visualShapes, btHashMap<btHashString,int>& name2Shape, float extraScaling)
{
btHashMap<btHashString,TiXmlElement* > allSources;
btHashMap<btHashString,VertexSource> vertexSources;
for(TiXmlElement* geometry = doc.RootElement()->FirstChildElement("library_geometries")->FirstChildElement("geometry");
geometry != NULL; geometry = geometry->NextSiblingElement("geometry"))
{
btAlignedObjectArray<btVector3> vertexPositions;
btAlignedObjectArray<btVector3> vertexNormals;
btAlignedObjectArray<int> indices;
const char* geometryName = geometry->Attribute("id");
for (TiXmlElement* mesh = geometry->FirstChildElement("mesh");(mesh != NULL); mesh = mesh->NextSiblingElement("mesh"))
{
TiXmlElement* vertices2 = mesh->FirstChildElement("vertices");
for (TiXmlElement* source = mesh->FirstChildElement("source");source != NULL;source = source->NextSiblingElement("source"))
{
const char* srcId= source->Attribute("id");
// printf("source id=%s\n",srcId);
allSources.insert(srcId,source);
}
const char* vertexId = vertices2->Attribute("id");
//printf("vertices id=%s\n",vertexId);
VertexSource vs;
for(TiXmlElement* input = vertices2->FirstChildElement("input");input != NULL;input = input->NextSiblingElement("input"))
{
const char* sem = input->Attribute("semantic");
std::string semName(sem);
// printf("sem=%s\n",sem);
const char* src = input->Attribute("source");
// printf("src=%s\n",src);
const char* srcIdRef = input->Attribute("source");
std::string source_name;
source_name = std::string(srcIdRef);
source_name = source_name.erase(0, 1);
if (semName=="POSITION")
{
vs.m_positionArrayId = source_name;
}
if (semName=="NORMAL")
{
vs.m_normalArrayId = source_name;
}
}
vertexSources.insert(vertexId,vs);
for (TiXmlElement* primitive = mesh->FirstChildElement("triangles"); primitive; primitive = primitive->NextSiblingElement("triangles"))
{
std::string positionSourceName;
std::string normalSourceName;
int primitiveCount;
primitive->QueryIntAttribute("count", &primitiveCount);
bool positionAndNormalInVertex=false;
int indexStride=1;
int posOffset = 0;
int normalOffset = 0;
int numIndices = 0;
{
for (TiXmlElement* input = primitive->FirstChildElement("input");input != NULL;input = input->NextSiblingElement("input"))
{
const char* sem = input->Attribute("semantic");
std::string semName(sem);
int offset = atoi(input->Attribute("offset"));
if ((offset+1)>indexStride)
indexStride=offset+1;
//printf("sem=%s\n",sem);
const char* src = input->Attribute("source");
//printf("src=%s\n",src);
const char* srcIdRef = input->Attribute("source");
std::string source_name;
source_name = std::string(srcIdRef);
source_name = source_name.erase(0, 1);
if (semName=="VERTEX")
{
//now we have POSITION and possibly NORMAL too, using same index array (<p>)
VertexSource* vs = vertexSources[source_name.c_str()];
if (vs->m_positionArrayId.length())
{
positionSourceName = vs->m_positionArrayId;
posOffset = offset;
}
if (vs->m_normalArrayId.length())
{
normalSourceName = vs->m_normalArrayId;
normalOffset = offset;
positionAndNormalInVertex = true;
}
}
if (semName=="NORMAL")
{
btAssert(normalSourceName.length()==0);
normalSourceName = source_name;
normalOffset = offset;
positionAndNormalInVertex = false;
}
}
numIndices = primitiveCount * 3;
}
btAlignedObjectArray<float> positionFloatArray;
int posStride=1;
TiXmlElement** sourcePtr = allSources[positionSourceName.c_str()];
if (sourcePtr)
{
readFloatArray(*sourcePtr,positionFloatArray, posStride);
}
btAlignedObjectArray<float> normalFloatArray;
int normalStride=1;
sourcePtr = allSources[normalSourceName.c_str()];
if (sourcePtr)
{
readFloatArray(*sourcePtr,normalFloatArray,normalStride);
}
btAlignedObjectArray<int> curIndices;
curIndices.reserve(numIndices*indexStride);
TokenIntArray adder(curIndices);
tokenize(primitive->FirstChildElement("p")->GetText(),adder);
assert(curIndices.size() == numIndices*indexStride);
int indexOffset = vertexPositions.size();
for(int index=0; index<numIndices; index++)
{
int posIndex = curIndices[index*indexStride+posOffset];
int normalIndex = curIndices[index*indexStride+normalOffset];
vertexPositions.push_back(btVector3(extraScaling*positionFloatArray[posIndex*3+0],
extraScaling*positionFloatArray[posIndex*3+1],
extraScaling*positionFloatArray[posIndex*3+2]));
vertexNormals.push_back(btVector3(normalFloatArray[normalIndex*3+0],
normalFloatArray[normalIndex*3+1],
normalFloatArray[normalIndex*3+2]));
}
int curNumIndices = indices.size();
indices.resize(curNumIndices+numIndices);
for(int index=0; index<numIndices; index++)
{
indices[curNumIndices+index] = index+indexOffset;
}
}//if(primitive != NULL)
}//for each mesh
int shapeIndex = visualShapes.size();
GLInstanceGraphicsShape& visualShape = visualShapes.expand();
{
visualShape.m_vertices = new b3AlignedObjectArray<GLInstanceVertex>;
visualShape.m_indices = new b3AlignedObjectArray<int>;
int indexBase = 0;
btAssert(vertexNormals.size()==vertexPositions.size());
for (int v=0;v<vertexPositions.size();v++)
{
GLInstanceVertex vtx;
vtx.xyzw[0] = vertexPositions[v].x();
vtx.xyzw[1] = vertexPositions[v].y();
vtx.xyzw[2] = vertexPositions[v].z();
vtx.xyzw[3] = 1.f;
vtx.normal[0] = vertexNormals[v].x();
vtx.normal[1] = vertexNormals[v].y();
vtx.normal[2] = vertexNormals[v].z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
visualShape.m_vertices->push_back(vtx);
}
for (int index=0;index<indices.size();index++)
{
visualShape.m_indices->push_back(indices[index]+indexBase);
}
printf(" index_count =%dand vertexPositions.size=%d\n",indices.size(), vertexPositions.size());
indexBase=visualShape.m_vertices->size();
visualShape.m_numIndices = visualShape.m_indices->size();
visualShape.m_numvertices = visualShape.m_vertices->size();
}
printf("geometry name=%s\n",geometryName);
name2Shape.insert(geometryName,shapeIndex);
}//for each geometry
}
void readNodeHierarchy(TiXmlElement* node,btHashMap<btHashString,int>& name2Shape, btAlignedObjectArray<ColladaGraphicsInstance>& visualShapeInstances, const btMatrix4x4& parentTransMat)
{
const char* nodeName = node->Attribute("id");
printf("processing node %s\n", nodeName);
btMatrix4x4 nodeTrans;
nodeTrans.setIdentity();
///todo(erwincoumans) we probably have to read the elements 'translate', 'scale', 'rotate' and 'matrix' in-order and accumulate them...
{
for (TiXmlElement* transElem = node->FirstChildElement("matrix");transElem;transElem=node->NextSiblingElement("matrix"))
{
if (transElem->GetText())
{
btAlignedObjectArray<float> floatArray;
TokenFloatArray adder(floatArray);
tokenize(transElem->GetText(),adder);
if (floatArray.size()==16)
{
btMatrix4x4 t(floatArray[0],floatArray[1],floatArray[2],floatArray[3],
floatArray[4],floatArray[5],floatArray[6],floatArray[7],
floatArray[8],floatArray[9],floatArray[10],floatArray[11],
floatArray[12],floatArray[13],floatArray[14],floatArray[15]);
nodeTrans = nodeTrans*t;
} else
{
printf("Error: expected 16 elements in a <matrix> element, skipping\n");
}
}
}
}
{
for (TiXmlElement* transElem = node->FirstChildElement("translate");transElem;transElem=node->NextSiblingElement("translate"))
{
if (transElem->GetText())
{
btVector3 pos = getVector3FromXmlText(transElem->GetText());
//nodePos+= unitScaling*parentScaling*pos;
btMatrix4x4 t;
t.setPureTranslation(pos);
nodeTrans = nodeTrans*t;
}
}
}
{
for(TiXmlElement* scaleElem = node->FirstChildElement("scale");
scaleElem!= NULL; scaleElem= node->NextSiblingElement("scale"))
{
if (scaleElem->GetText())
{
btVector3 scaling = getVector3FromXmlText(scaleElem->GetText());
btMatrix4x4 t;
t.setPureScaling(scaling);
nodeTrans = nodeTrans*t;
}
}
}
{
for(TiXmlElement* rotateElem = node->FirstChildElement("rotate");
rotateElem!= NULL; rotateElem= node->NextSiblingElement("rotate"))
{
if (rotateElem->GetText())
{
//accumulate orientation
btVector4 rotate = getVector4FromXmlText(rotateElem->GetText());
btQuaternion orn(btVector3(rotate),btRadians(rotate[3]));//COLLADA DAE rotate is in degrees, convert to radians
btMatrix4x4 t;
t.setPureRotation(orn);
nodeTrans = nodeTrans*t;
}
}
}
nodeTrans = parentTransMat*nodeTrans;
for (TiXmlElement* instanceGeom = node->FirstChildElement("instance_geometry");
instanceGeom!=0;
instanceGeom=instanceGeom->NextSiblingElement("instance_geometry"))
{
const char* geomUrl = instanceGeom->Attribute("url");
printf("node referring to geom %s\n", geomUrl);
geomUrl++;
int* shapeIndexPtr = name2Shape[geomUrl];
if (shapeIndexPtr)
{
int index = *shapeIndexPtr;
printf("found geom with index %d\n", *shapeIndexPtr);
ColladaGraphicsInstance& instance = visualShapeInstances.expand();
instance.m_shapeIndex = *shapeIndexPtr;
instance.m_worldTransform = nodeTrans;
} else
{
printf("geom not found\n");
}
}
for(TiXmlElement* childNode = node->FirstChildElement("node");
childNode!= NULL; childNode = childNode->NextSiblingElement("node"))
{
readNodeHierarchy(childNode,name2Shape,visualShapeInstances, nodeTrans);
}
}
void readVisualSceneInstanceGeometries(TiXmlDocument& doc, btHashMap<btHashString,int>& name2Shape, btAlignedObjectArray<ColladaGraphicsInstance>& visualShapeInstances)
{
btHashMap<btHashString,TiXmlElement* > allVisualScenes;
TiXmlElement* libVisualScenes = doc.RootElement()->FirstChildElement("library_visual_scenes");
if (libVisualScenes==0)
return;
{
for(TiXmlElement* scene = libVisualScenes->FirstChildElement("visual_scene");
scene != NULL; scene = scene->NextSiblingElement("visual_scene"))
{
const char* sceneName = scene->Attribute("id");
allVisualScenes.insert(sceneName,scene);
}
}
TiXmlElement* scene = 0;
{
TiXmlElement* scenes = doc.RootElement()->FirstChildElement("scene");
if (scenes)
{
TiXmlElement* instanceSceneReference = scenes->FirstChildElement("instance_visual_scene");
if (instanceSceneReference)
{
const char* instanceSceneUrl = instanceSceneReference->Attribute("url");
TiXmlElement** sceneInstancePtr = allVisualScenes[instanceSceneUrl+1];//skip #
if (sceneInstancePtr)
{
scene = *sceneInstancePtr;
}
}
}
}
if (scene)
{
for(TiXmlElement* node = scene->FirstChildElement("node");
node != NULL; node = node->NextSiblingElement("node"))
{
btMatrix4x4 identity;
identity.setIdentity();
btVector3 identScaling(1,1,1);
readNodeHierarchy(node,name2Shape,visualShapeInstances, identity);
}
}
}
void getUnitMeterScalingAndUpAxisTransform(TiXmlDocument& doc, btTransform& tr, float& unitMeterScaling)
{
TiXmlElement* unitMeter = doc.RootElement()->FirstChildElement("asset")->FirstChildElement("unit");
if (unitMeter)
{
const char* meterText = unitMeter->Attribute("meter");
printf("meterText=%s\n", meterText);
unitMeterScaling = atof(meterText);
}
TiXmlElement* upAxisElem = doc.RootElement()->FirstChildElement("asset")->FirstChildElement("up_axis");
if (upAxisElem)
{
std::string upAxisTxt = upAxisElem->GetText();
if (upAxisTxt == "X_UP")
{
btQuaternion y2x(btVector3(0,0,1),SIMD_HALF_PI);
tr.setRotation(y2x);
}
if (upAxisTxt == "Y_UP")
{
//assume Y_UP for now, to be compatible with assimp?
}
if (upAxisTxt == "Z_UP")
{
btQuaternion y2z(btVector3(1,0,0),-SIMD_HALF_PI);
tr.setRotation(y2z);
}
}
}
void LoadMeshFromCollada(const char* relativeFileName, btAlignedObjectArray<GLInstanceGraphicsShape>& visualShapes, btAlignedObjectArray<ColladaGraphicsInstance>& visualShapeInstances, btTransform& upAxisTransform, float& unitMeterScaling)
{
GLInstanceGraphicsShape* instance = 0;
//usually COLLADA files don't have that many visual geometries/shapes
visualShapes.reserve(32);
float extraScaling = 1;//0.01;
btHashMap<btHashString, int> name2ShapeIndex;
b3FileUtils f;
char filename[1024];
if (!f.findFile(relativeFileName,filename,1024))
{
printf("File not found: %s\n", filename);
return;
}
TiXmlDocument doc(filename);
if (!doc.LoadFile())
return;
//We need units to be in meter, so apply a scaling using the asset/units meter
unitMeterScaling=1;
upAxisTransform.setIdentity();
//Also we can optionally compensate all transforms using the asset/up_axis as well as unit meter scaling
getUnitMeterScalingAndUpAxisTransform(doc, upAxisTransform, unitMeterScaling);
btMatrix4x4 ident;
ident.setIdentity();
readLibraryGeometries(doc, visualShapes, name2ShapeIndex, extraScaling);
readVisualSceneInstanceGeometries(doc, name2ShapeIndex, visualShapeInstances);
}