Files
bullet3/examples/RoboticsLearning/KukaGraspExample.cpp
Erwin Coumans 5e09b17baf experimental Inverse Kinematics for KUKA iiwa exposed in
shared memory api and pybullet. Will be extended for arbitrary bodies
and with target orientation (besides target position)
2016-09-13 23:37:46 +01:00

273 lines
8.2 KiB
C++

#include "KukaGraspExample.h"
#include "../SharedMemory/IKTrajectoryHelper.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../SharedMemory/PhysicsServerSharedMemory.h"
#include "../SharedMemory/PhysicsClientC_API.h"
#include <string>
#include "b3RobotSimAPI.h"
#include "../Utils/b3Clock.h"
///quick demo showing the right-handed coordinate system and positive rotations around each axis
class KukaGraspExample : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
GUIHelperInterface* m_guiHelper;
b3RobotSimAPI m_robotSim;
int m_kukaIndex;
IKTrajectoryHelper m_ikHelper;
int m_targetSphereInstance;
b3Vector3 m_targetPos;
b3Vector3 m_worldPos;
double m_time;
int m_options;
b3AlignedObjectArray<int> m_movingInstances;
enum
{
numCubesX = 20,
numCubesY = 20
};
public:
KukaGraspExample(GUIHelperInterface* helper, int options)
:m_app(helper->getAppInterface()),
m_guiHelper(helper),
m_options(options),
m_kukaIndex(-1),
m_time(0)
{
m_targetPos.setValue(0.5,0,1);
m_worldPos.setValue(0, 0, 0);
m_app->setUpAxis(2);
}
virtual ~KukaGraspExample()
{
m_app->m_renderer->enableBlend(false);
}
virtual void physicsDebugDraw(int debugDrawMode)
{
}
virtual void initPhysics()
{
///create some graphics proxy for the tracking target
///the endeffector tries to track it using Inverse Kinematics
{
int sphereId = m_app->registerGraphicsUnitSphereShape(SPHERE_LOD_MEDIUM);
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 color = b3MakeVector4(1., 0.3, 0.3, 1);
b3Vector3 scaling = b3MakeVector3(.02, .02, .02);
m_targetSphereInstance = m_app->m_renderer->registerGraphicsInstance(sphereId, m_targetPos, orn, color, scaling);
}
m_app->m_renderer->writeTransforms();
m_ikHelper.createKukaIIWA();
bool connected = m_robotSim.connect(m_guiHelper);
b3Printf("robotSim connected = %d",connected);
{
b3RobotSimLoadFileArgs args("");
args.m_fileName = "kuka_iiwa/model.urdf";
args.m_startPosition.setValue(0,0,0);
b3RobotSimLoadFileResults results;
if (m_robotSim.loadFile(args, results) && results.m_uniqueObjectIds.size()==1)
{
m_kukaIndex = results.m_uniqueObjectIds[0];
int numJoints = m_robotSim.getNumJoints(m_kukaIndex);
b3Printf("numJoints = %d",numJoints);
for (int i=0;i<numJoints;i++)
{
b3JointInfo jointInfo;
m_robotSim.getJointInfo(m_kukaIndex,i,&jointInfo);
b3Printf("joint[%d].m_jointName=%s",i,jointInfo.m_jointName);
}
/*
int wheelJointIndices[4]={2,3,6,7};
int wheelTargetVelocities[4]={-10,-10,-10,-10};
for (int i=0;i<4;i++)
{
b3JointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
controlArgs.m_targetVelocity = wheelTargetVelocities[i];
controlArgs.m_maxTorqueValue = 1e30;
m_robotSim.setJointMotorControl(m_kukaIndex,wheelJointIndices[i],controlArgs);
}
*/
}
{
b3RobotSimLoadFileArgs args("");
args.m_fileName = "kiva_shelf/model.sdf";
args.m_forceOverrideFixedBase = true;
args.m_fileType = B3_SDF_FILE;
args.m_startOrientation = b3Quaternion(0,0,0,1);
b3RobotSimLoadFileResults results;
m_robotSim.loadFile(args,results);
}
{
b3RobotSimLoadFileArgs args("");
args.m_fileName = "plane.urdf";
args.m_startPosition.setValue(0,0,0);
args.m_forceOverrideFixedBase = true;
b3RobotSimLoadFileResults results;
m_robotSim.loadFile(args,results);
m_robotSim.setGravity(b3MakeVector3(0,0,0));
}
}
}
virtual void exitPhysics()
{
m_robotSim.disconnect();
}
virtual void stepSimulation(float deltaTime)
{
float dt = deltaTime;
btClamp(dt,0.0001f,0.01f);
m_time+=dt;
m_targetPos.setValue(0.4-0.4*b3Cos( m_time), 0, 0.8+0.4*b3Cos( m_time));
int numJoints = m_robotSim.getNumJoints(m_kukaIndex);
if (numJoints==7)
{
double q_current[7]={0,0,0,0,0,0,0};
double world_position[3]={0,0,0};
b3JointStates jointStates;
if (m_robotSim.getJointStates(m_kukaIndex,jointStates))
{
//skip the base positions (7 values)
b3Assert(7+numJoints == jointStates.m_numDegreeOfFreedomQ);
for (int i=0;i<numJoints;i++)
{
q_current[i] = jointStates.m_actualStateQ[i+7];
}
}
// compute body position
m_robotSim.getLinkState(0, 6, world_position);
m_worldPos.setValue(world_position[0], world_position[1], world_position[2]);
b3Vector3DoubleData dataOut;
m_targetPos.serializeDouble(dataOut);
b3Vector3DoubleData worldPosDataOut;
m_worldPos.serializeDouble(worldPosDataOut);
b3RobotSimInverseKinematicArgs ikargs;
b3RobotSimInverseKinematicsResults ikresults;
ikargs.m_bodyUniqueId = m_kukaIndex;
// ikargs.m_currentJointPositions = q_current;
// ikargs.m_numPositions = 7;
ikargs.m_endEffectorTargetPosition[0] = dataOut.m_floats[0];
ikargs.m_endEffectorTargetPosition[1] = dataOut.m_floats[1];
ikargs.m_endEffectorTargetPosition[2] = dataOut.m_floats[2];
//todo: orientation IK target
// ikargs.m_endEffectorTargetOrientation[0] = 0;
// ikargs.m_endEffectorTargetOrientation[1] = 0;
// ikargs.m_endEffectorTargetOrientation[2] = 0;
// ikargs.m_endEffectorTargetOrientation[3] = 1;
if (m_robotSim.calculateInverseKinematics(ikargs,ikresults))
{
//copy the IK result to the desired state of the motor/actuator
for (int i=0;i<numJoints;i++)
{
b3JointMotorArgs t(CONTROL_MODE_POSITION_VELOCITY_PD);
t.m_targetPosition = ikresults.m_calculatedJointPositions[i];
t.m_maxTorqueValue = 1000;
t.m_kp= 1;
m_robotSim.setJointMotorControl(m_kukaIndex,i,t);
}
}
}
m_robotSim.stepSimulation();
}
virtual void renderScene()
{
m_robotSim.renderScene();
b3Quaternion orn(0, 0, 0, 1);
m_app->m_renderer->writeSingleInstanceTransformToCPU(m_targetPos, orn, m_targetSphereInstance);
m_app->m_renderer->writeTransforms();
//draw the end-effector target sphere
//m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw()
{
}
virtual bool mouseMoveCallback(float x,float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 3;
float pitch = 0;
float yaw = 30;
float targetPos[3]={-0.2,0.8,0.3};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0],targetPos[1],targetPos[2]);
}
}
};
class CommonExampleInterface* KukaGraspExampleCreateFunc(struct CommonExampleOptions& options)
{
return new KukaGraspExample(options.m_guiHelper, options.m_option);
}