Files
bullet3/Demos3/FiniteElementMethod/FiniteElementDemo.cpp
2014-10-31 15:24:07 -07:00

386 lines
13 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///the Finite Element Method is extracted from the OpenTissue library,
///under the zlib license: http://www.opentissue.org/mediawiki/index.php/Main_Page
#include "FiniteElementDemo.h"
#include "OpenGLWindow/CommonRenderInterface.h"
#include "LinearMath/btQuaternion.h"
//#include "OpenGLWindow/ShapeData.h"
#include "MyFemMesh.h"
#include <OpenTissue/core/math/math_basic_types.h>
#include <OpenTissue/dynamics/fem/fem.h>
#include <OpenTissue/core/containers/t4mesh/util/t4mesh_block_generator.h>
#include "LinearMath/btAlignedObjectArray.h"
#include "Bullet3AppSupport/CommonParameterInterface.h"
//typedef OpenTissue::math::BasicMathTypes<float,size_t> math_types;
typedef OpenTissue::math::BasicMathTypes<double,size_t> math_types;
typedef OpenTissue::fem::Mesh<math_types> mesh_type;
typedef math_types::vector3_type vector3_type;
typedef math_types::real_type real_type;
static int fixedNodes = 1;
struct FiniteElementDemoInternalData
{
mesh_type m_mesh1;
bool m_stiffness_warp_on; ///< Boolean value indicating whether stiffness warping is turned on or off.
bool m_collideGroundPlane;
bool m_fixNodes;
real_type m_gravity;
btScalar m_young;// = 500000;
btScalar m_poisson;// = 0.33;
real_type m_density;// = 1000;
//--- infinite m_c_yield plasticity settings means that plasticity is turned off
real_type m_c_yield;// = .04; //--- should be less than maximum expected elastic strain in order to see effect (works as a minimum).
real_type m_c_creep;// = .20; //--- controls how fast the plasticity effect occurs (it is a rate-like control).
real_type m_c_max;// = 0.2; //--- This is maximum allowed plasticity strain (works as a maximum).
double m_damp;
int m_tetrahedralMeshRenderIndex;
FiniteElementDemoInternalData()
{
m_stiffness_warp_on= true;
m_collideGroundPlane = true;
m_fixNodes = fixedNodes==1;
fixedNodes=1-fixedNodes;
m_gravity = 9.81;
m_young = 500000;//47863;//100000;
m_poisson = 0.33;
m_density = 1054.00;//1000;
//--- infinite m_c_yield plasticity settings means that plasticity is turned off
m_c_yield = 0;//0.03;//.04; //--- should be less than maximum expected elastic strain in order to see effect (works as a minimum).
m_c_creep = 0;//0.20;//.20; //--- controls how fast the plasticity effect occurs (it is a rate-like control).
m_c_max = 1e30f;//0.2; //--- This is maximum allowed plasticity strain (works as a maximum).
m_damp=0.2f;
m_tetrahedralMeshRenderIndex=-1;
}
};
FiniteElementDemo::FiniteElementDemo(CommonGraphicsApp* app)
:m_app(app),
m_x(0),
m_y(0),
m_z(0)
{
m_app->setUpAxis(2);
m_data = new FiniteElementDemoInternalData;
}
FiniteElementDemo::~FiniteElementDemo()
{
delete m_data;
m_app->m_renderer->enableBlend(false);
m_app->m_renderer->removeAllInstances();
}
struct MyTetVertex
{
float x,y,z,w;
float nx,ny,nz;
float u,v;
};
void FiniteElementDemo::initPhysics()
{
{
OpenTissue::t4mesh::generate_blocks(10,3,3,0.1,0.1,0.1,m_data->m_mesh1);
for (int n=0;n<m_data->m_mesh1.m_nodes.size();n++)
{
m_data->m_mesh1.m_nodes[n].m_coord(m_app->getUpAxis())+=.5f;
m_data->m_mesh1.m_nodes[n].m_model_coord = m_data->m_mesh1.m_nodes[n].m_coord;
}
OpenTissue::fem::init(m_data->m_mesh1,double(m_data->m_young),double(m_data->m_poisson),m_data->m_density,m_data->m_c_yield,m_data->m_c_creep,m_data->m_c_max);
}
{
SliderParams slider("Young",&m_data->m_young);
// slider.m_showValues = false;
slider.m_minVal=50000;
slider.m_maxVal=1000000;
m_app->m_parameterInterface->registerSliderFloatParameter(slider);
}
{
SliderParams slider("Poisson",&m_data->m_poisson);
// slider.m_showValues = false;
slider.m_minVal=0.01;
slider.m_maxVal=0.49;
m_app->m_parameterInterface->registerSliderFloatParameter(slider);
}
{
int strideInBytes = 9*sizeof(float);
int numVertices =m_data->m_mesh1.m_nodes.size();
btAlignedObjectArray<MyTetVertex> verts;
verts.resize(numVertices);
for (int n=0;n<m_data->m_mesh1.m_nodes.size();n++)
{
verts[n].x = m_data->m_mesh1.m_nodes[n].m_coord(0);
verts[n].y = m_data->m_mesh1.m_nodes[n].m_coord(1);
verts[n].z = m_data->m_mesh1.m_nodes[n].m_coord(2);
verts[n].w = 1;
verts[n].nx = 0;
verts[n].ny = 1;
verts[n].nz = 0;
verts[n].u = 0.5;
verts[n].v = 0.4;
}
btAlignedObjectArray<int> indices;
for (int t=0;t<m_data->m_mesh1.m_tetrahedra.size();t++)
{
int index0 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[0];
int index1 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[1];
int index2 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[2];
int index3 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[3];
indices.push_back(index0); indices.push_back(index1); indices.push_back(index2);
indices.push_back(index2); indices.push_back(index1); indices.push_back(index3);
indices.push_back(index1); indices.push_back(index0); indices.push_back(index3);
indices.push_back(index0); indices.push_back(index2); indices.push_back(index3);
}
m_data->m_tetrahedralMeshRenderIndex = m_app->m_renderer->registerShape(&verts[0].x,verts.size(),&indices[0],indices.size());
float pos[4] = {0,0,0,1};
float orn[4] = {0,0,0,1};
float color[4] = {0,1,1,1};
float scaling[4] = {1,1,1,1};
m_app->m_renderer->registerGraphicsInstance(m_data->m_tetrahedralMeshRenderIndex,pos,orn,color,scaling);
}
{
//ground shape
btVector3 cubeHalfExtents(10,10,10);
cubeHalfExtents[m_app->getUpAxis()] = 0.01;
int cubeIn = m_app->registerCubeShape(cubeHalfExtents[0],cubeHalfExtents[1],cubeHalfExtents[2]);
float pos[4] = {0,0,0,1};
pos[m_app->getUpAxis()]=-0.02;
float orn[4] = {0,0,0,1};
float color[4] = {0,1,1,1};
float scaling[4] = {1,1,1,1};
m_app->m_renderer->registerGraphicsInstance(cubeIn,pos,orn,color,scaling);
}
m_app->m_renderer->writeTransforms();
}
void FiniteElementDemo::exitPhysics()
{
}
void FiniteElementDemo::stepSimulation(float deltaTime)
{
m_x+=0.01f;
m_y+=0.01f;
m_z+=0.01f;
double dt = 1./60.;//double (deltaTime);
double poisson =m_data->m_poisson;
OpenTissue::fem::init(m_data->m_mesh1,double(m_data->m_young),poisson,m_data->m_density,m_data->m_c_yield,m_data->m_c_creep,m_data->m_c_max);
for (int n=0;n<m_data->m_mesh1.m_nodes.size();n++)
{
if (m_data->m_fixNodes)
{
if (m_data->m_mesh1.m_nodes[n].m_model_coord(0) < 0.01)
{
m_data->m_mesh1.m_nodes[n].m_fixed = true;
}
} else
{
if (m_data->m_mesh1.m_nodes[n].m_model_coord(0) < 0.01)
{
m_data->m_mesh1.m_nodes[n].m_fixed = false;
}
}
if (m_data->m_collideGroundPlane && m_data->m_mesh1.m_nodes[n].m_coord(m_app->getUpAxis())<0.f)
{
float depth = -m_data->m_mesh1.m_nodes[n].m_coord(m_app->getUpAxis());
if (depth>0.1)
depth=0.1;
m_data->m_mesh1.m_nodes[n].m_f_external(m_app->getUpAxis()) = depth*1000;
if (m_data->m_mesh1.m_nodes[n].m_velocity(m_app->getUpAxis()) < 0.f)
{
m_data->m_mesh1.m_nodes[n].m_velocity(m_app->getUpAxis())=0.f;
}
int frictionAxisA=0;
int frictionAxisB=2;
if (m_app->getUpAxis()==1)
{
frictionAxisA=0;
frictionAxisB=2;
} else
{
frictionAxisA=0;
frictionAxisB=1;
}
m_data->m_mesh1.m_nodes[n].m_velocity(frictionAxisA)=0.f;
m_data->m_mesh1.m_nodes[n].m_velocity(frictionAxisB)=0.f;
} else
{
vector3_type gravity = vector3_type(0.0, 0.0 , 0.0);
gravity(m_app->getUpAxis()) = -(m_data->m_mesh1.m_nodes[n].m_mass * m_data->m_gravity);
m_data->m_mesh1.m_nodes[n].m_f_external =gravity;
}
//m_data->m_mesh1.m_nodes[n].m_velocity.clear();
}
OpenTissue::fem::simulate(m_data->m_mesh1,dt,m_data->m_stiffness_warp_on,m_data->m_damp);//,0.1,20,20);//,1.0,20,20);
}
void FiniteElementDemo::renderScene()
{
{
int strideInBytes = 9*sizeof(float);
int numVertices =m_data->m_mesh1.m_nodes.size();
btAlignedObjectArray<MyTetVertex> verts;
verts.resize(numVertices);
for (int n=0;n<m_data->m_mesh1.m_nodes.size();n++)
{
verts[n].x = m_data->m_mesh1.m_nodes[n].m_coord(0);
verts[n].y = m_data->m_mesh1.m_nodes[n].m_coord(1);
verts[n].z = m_data->m_mesh1.m_nodes[n].m_coord(2);
verts[n].w = 1;
verts[n].nx = 0;
verts[n].ny = 1;
verts[n].nz = 0;
verts[n].u = 0.5;
verts[n].v = 0.4;
}
btAlignedObjectArray<int> indices;
for (int t=0;t<m_data->m_mesh1.m_tetrahedra.size();t++)
{
int index0 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[0];
int index1 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[1];
int index2 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[2];
int index3 =m_data->m_mesh1.m_tetrahedra[t].m_nodes[3];
indices.push_back(index0); indices.push_back(index1); indices.push_back(index2);
indices.push_back(index2); indices.push_back(index1); indices.push_back(index3);
indices.push_back(index1); indices.push_back(index0); indices.push_back(index3);
indices.push_back(index0); indices.push_back(index2); indices.push_back(index3);
}
m_app->m_renderer->updateShape(m_data->m_tetrahedralMeshRenderIndex,&verts[0].x);
}
m_app->m_renderer->renderScene();
}
void FiniteElementDemo::physicsDebugDraw()
{
{
btAlignedObjectArray<btVector3FloatData> m_linePoints;
btAlignedObjectArray<unsigned int> m_lineIndices;
//geometry::Tetrahedron<math::default_math_types> tet;
for (int t=0;t<m_data->m_mesh1.m_tetrahedra.size();t++)
{
vector3_type v0d = m_data->m_mesh1.m_nodes[m_data->m_mesh1.m_tetrahedra[t].m_nodes[0]].m_coord;
vector3_type v1d = m_data->m_mesh1.m_nodes[m_data->m_mesh1.m_tetrahedra[t].m_nodes[1]].m_coord;
vector3_type v2d = m_data->m_mesh1.m_nodes[m_data->m_mesh1.m_tetrahedra[t].m_nodes[2]].m_coord;
vector3_type v3d = m_data->m_mesh1.m_nodes[m_data->m_mesh1.m_tetrahedra[t].m_nodes[3]].m_coord;
btVector3 v0(v0d(0),v0d(1),v0d(2));
btVector3 v1(v1d(0),v1d(1),v1d(2));
btVector3 v2(v2d(0),v2d(1),v2d(2));
btVector3 v3(v3d(0),v3d(1),v3d(2));
btVector3FloatData vf0,vf1,vf2,vf3;
v0.serializeFloat(vf0);
v1.serializeFloat(vf1);
v2.serializeFloat(vf2);
v3.serializeFloat(vf3);
unsigned int baseIndex = m_linePoints.size();
m_linePoints.push_back(vf0);
m_linePoints.push_back(vf1);
m_linePoints.push_back(vf2);
m_linePoints.push_back(vf3);
m_lineIndices.push_back(baseIndex+0);
m_lineIndices.push_back(baseIndex+1);
m_lineIndices.push_back(baseIndex+0);
m_lineIndices.push_back(baseIndex+2);
m_lineIndices.push_back(baseIndex+0);
m_lineIndices.push_back(baseIndex+3);
m_lineIndices.push_back(baseIndex+1);
m_lineIndices.push_back(baseIndex+2);
m_lineIndices.push_back(baseIndex+2);
m_lineIndices.push_back(baseIndex+3);
m_lineIndices.push_back(baseIndex+1);
m_lineIndices.push_back(baseIndex+3);
}
float debugColor[4]={0,0,0.4,1};
m_app->m_renderer->drawLines(&m_linePoints[0].m_floats[0],debugColor,
m_linePoints.size(),sizeof(btVector3FloatData),
&m_lineIndices[0],
m_lineIndices.size(),
1);
};
}
bool FiniteElementDemo::mouseMoveCallback(float x,float y)
{
return false;
}
bool FiniteElementDemo::mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
bool FiniteElementDemo::keyboardCallback(int key, int state)
{
return false;
}