Move btSoftBodySolverData.h to src/BulletMultiThreaded/GpuSoftBodySolvers/Shared/btSoftBodySolverData.h Attempt to re-enable MiniCL version of OpenCLClothDemo (cloth-capsule collision still broken) Add optional OpenCL acceleration to SerializeDemo (just for cloth)
249 lines
8.9 KiB
C++
249 lines
8.9 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include <MiniCL/cl_MiniCL_Defs.h>
|
|
|
|
#define MSTRINGIFY(A) A
|
|
#include "../OpenCLC10/ApplyForces.cl"
|
|
#include "../OpenCLC10/Integrate.cl"
|
|
#include "../OpenCLC10/PrepareLinks.cl"
|
|
#include "../OpenCLC10/SolvePositions.cl"
|
|
#include "../OpenCLC10/UpdateNodes.cl"
|
|
#include "../OpenCLC10/UpdateNormals.cl"
|
|
#include "../OpenCLC10/UpdatePositions.cl"
|
|
#include "../OpenCLC10/UpdatePositionsFromVelocities.cl"
|
|
#include "../OpenCLC10/VSolveLinks.cl"
|
|
//#include "../OpenCLC10/SolveCollisionsAndUpdateVelocities.cl"
|
|
|
|
|
|
MINICL_REGISTER(PrepareLinksKernel)
|
|
MINICL_REGISTER(VSolveLinksKernel)
|
|
MINICL_REGISTER(UpdatePositionsFromVelocitiesKernel)
|
|
MINICL_REGISTER(SolvePositionsFromLinksKernel)
|
|
MINICL_REGISTER(updateVelocitiesFromPositionsWithVelocitiesKernel)
|
|
MINICL_REGISTER(updateVelocitiesFromPositionsWithoutVelocitiesKernel)
|
|
MINICL_REGISTER(IntegrateKernel)
|
|
MINICL_REGISTER(ApplyForcesKernel)
|
|
MINICL_REGISTER(ResetNormalsAndAreasKernel)
|
|
MINICL_REGISTER(NormalizeNormalsAndAreasKernel)
|
|
MINICL_REGISTER(UpdateSoftBodiesKernel)
|
|
|
|
|
|
float mydot3a(float4 a, float4 b)
|
|
{
|
|
return a.x*b.x + a.y*b.y + a.z*b.z;
|
|
}
|
|
|
|
|
|
typedef struct
|
|
{
|
|
int firstObject;
|
|
int endObject;
|
|
} CollisionObjectIndices;
|
|
|
|
typedef struct
|
|
{
|
|
float4 shapeTransform[4]; // column major 4x4 matrix
|
|
float4 linearVelocity;
|
|
float4 angularVelocity;
|
|
|
|
int softBodyIdentifier;
|
|
int collisionShapeType;
|
|
|
|
|
|
// Shape information
|
|
// Compressed from the union
|
|
float radius;
|
|
float halfHeight;
|
|
int upAxis;
|
|
|
|
float margin;
|
|
float friction;
|
|
|
|
int padding0;
|
|
|
|
} CollisionShapeDescription;
|
|
|
|
// From btBroadphaseProxy.h
|
|
__constant int CAPSULE_SHAPE_PROXYTYPE = 10;
|
|
|
|
// Multiply column-major matrix against vector
|
|
float4 matrixVectorMul( float4 matrix[4], float4 vector )
|
|
{
|
|
float4 returnVector;
|
|
float4 row0 = float4(matrix[0].x, matrix[1].x, matrix[2].x, matrix[3].x);
|
|
float4 row1 = float4(matrix[0].y, matrix[1].y, matrix[2].y, matrix[3].y);
|
|
float4 row2 = float4(matrix[0].z, matrix[1].z, matrix[2].z, matrix[3].z);
|
|
float4 row3 = float4(matrix[0].w, matrix[1].w, matrix[2].w, matrix[3].w);
|
|
returnVector.x = dot(row0, vector);
|
|
returnVector.y = dot(row1, vector);
|
|
returnVector.z = dot(row2, vector);
|
|
returnVector.w = dot(row3, vector);
|
|
return returnVector;
|
|
}
|
|
|
|
__kernel void
|
|
SolveCollisionsAndUpdateVelocitiesKernel(
|
|
const int numNodes,
|
|
const float isolverdt,
|
|
__global int *g_vertexClothIdentifier,
|
|
__global float4 *g_vertexPreviousPositions,
|
|
__global float * g_perClothFriction,
|
|
__global float * g_clothDampingFactor,
|
|
__global CollisionObjectIndices * g_perClothCollisionObjectIndices,
|
|
__global CollisionShapeDescription * g_collisionObjectDetails,
|
|
__global float4 * g_vertexForces,
|
|
__global float4 *g_vertexVelocities,
|
|
__global float4 *g_vertexPositions GUID_ARG)
|
|
{
|
|
int nodeID = get_global_id(0);
|
|
float4 forceOnVertex = (float4)(0.f, 0.f, 0.f, 0.f);
|
|
|
|
if( get_global_id(0) < numNodes )
|
|
{
|
|
int clothIdentifier = g_vertexClothIdentifier[nodeID];
|
|
|
|
// Abort if this is not a valid cloth
|
|
if( clothIdentifier < 0 )
|
|
return;
|
|
|
|
|
|
float4 position (g_vertexPositions[nodeID].xyz, 1.f);
|
|
float4 previousPosition (g_vertexPreviousPositions[nodeID].xyz, 1.f);
|
|
|
|
float clothFriction = g_perClothFriction[clothIdentifier];
|
|
float dampingFactor = g_clothDampingFactor[clothIdentifier];
|
|
float velocityCoefficient = (1.f - dampingFactor);
|
|
float4 difference = position - previousPosition;
|
|
float4 velocity = difference*velocityCoefficient*isolverdt;
|
|
|
|
CollisionObjectIndices collisionObjectIndices = g_perClothCollisionObjectIndices[clothIdentifier];
|
|
|
|
int numObjects = collisionObjectIndices.endObject - collisionObjectIndices.firstObject;
|
|
|
|
if( numObjects > 0 )
|
|
{
|
|
// We have some possible collisions to deal with
|
|
for( int collision = collisionObjectIndices.firstObject; collision < collisionObjectIndices.endObject; ++collision )
|
|
{
|
|
CollisionShapeDescription shapeDescription = g_collisionObjectDetails[collision];
|
|
float colliderFriction = shapeDescription.friction;
|
|
|
|
if( shapeDescription.collisionShapeType == CAPSULE_SHAPE_PROXYTYPE )
|
|
{
|
|
// Colliding with a capsule
|
|
|
|
float capsuleHalfHeight = shapeDescription.halfHeight;
|
|
float capsuleRadius = shapeDescription.radius;
|
|
float capsuleMargin = shapeDescription.margin;
|
|
int capsuleupAxis = shapeDescription.upAxis;
|
|
|
|
// Four columns of worldTransform matrix
|
|
float4 worldTransform[4];
|
|
worldTransform[0] = shapeDescription.shapeTransform[0];
|
|
worldTransform[1] = shapeDescription.shapeTransform[1];
|
|
worldTransform[2] = shapeDescription.shapeTransform[2];
|
|
worldTransform[3] = shapeDescription.shapeTransform[3];
|
|
|
|
// Correctly define capsule centerline vector
|
|
float4 c1 (0.f, 0.f, 0.f, 1.f);
|
|
float4 c2 (0.f, 0.f, 0.f, 1.f);
|
|
c1.x = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 0 );
|
|
c1.y = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 1 );
|
|
c1.z = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 2 );
|
|
c2.x = -c1.x;
|
|
c2.y = -c1.y;
|
|
c2.z = -c1.z;
|
|
|
|
|
|
float4 worldC1 = matrixVectorMul(worldTransform, c1);
|
|
float4 worldC2 = matrixVectorMul(worldTransform, c2);
|
|
float4 segment = (worldC2 - worldC1);
|
|
|
|
// compute distance of tangent to vertex along line segment in capsule
|
|
float distanceAlongSegment = -( mydot3a( (worldC1 - position), segment ) / mydot3a(segment, segment) );
|
|
|
|
float4 closestPoint = (worldC1 + (segment * distanceAlongSegment));
|
|
float distanceFromLine = length(position - closestPoint);
|
|
float distanceFromC1 = length(worldC1 - position);
|
|
float distanceFromC2 = length(worldC2 - position);
|
|
|
|
// Final distance from collision, point to push from, direction to push in
|
|
// for impulse force
|
|
float dist;
|
|
float4 normalVector;
|
|
if( distanceAlongSegment < 0 )
|
|
{
|
|
dist = distanceFromC1;
|
|
normalVector = float4(normalize(position - worldC1).xyz, 0.f);
|
|
} else if( distanceAlongSegment > 1.f ) {
|
|
dist = distanceFromC2;
|
|
normalVector = float4(normalize(position - worldC2).xyz, 0.f);
|
|
} else {
|
|
dist = distanceFromLine;
|
|
normalVector = float4(normalize(position - closestPoint).xyz, 0.f);
|
|
}
|
|
|
|
float4 colliderLinearVelocity = shapeDescription.linearVelocity;
|
|
float4 colliderAngularVelocity = shapeDescription.angularVelocity;
|
|
float4 velocityOfSurfacePoint = colliderLinearVelocity + cross(colliderAngularVelocity, position - float4(worldTransform[0].w, worldTransform[1].w, worldTransform[2].w, 0.f));
|
|
|
|
float minDistance = capsuleRadius + capsuleMargin;
|
|
|
|
// In case of no collision, this is the value of velocity
|
|
velocity = (position - previousPosition) * velocityCoefficient * isolverdt;
|
|
|
|
|
|
// Check for a collision
|
|
if( dist < minDistance )
|
|
{
|
|
// Project back to surface along normal
|
|
position = position + float4(normalVector*(minDistance - dist)*0.9f);
|
|
velocity = (position - previousPosition) * velocityCoefficient * isolverdt;
|
|
float4 relativeVelocity = velocity - velocityOfSurfacePoint;
|
|
|
|
float4 p1 = normalize(cross(normalVector, segment));
|
|
float4 p2 = normalize(cross(p1, normalVector));
|
|
// Full friction is sum of velocities in each direction of plane
|
|
float4 frictionVector = p1*mydot3a(relativeVelocity, p1) + p2*mydot3a(relativeVelocity, p2);
|
|
|
|
// Real friction is peak friction corrected by friction coefficients
|
|
frictionVector = frictionVector * (colliderFriction*clothFriction);
|
|
|
|
float approachSpeed = dot(relativeVelocity, normalVector);
|
|
|
|
if( approachSpeed <= 0.0f )
|
|
forceOnVertex -= frictionVector;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
g_vertexVelocities[nodeID] = float4(velocity.xyz, 0.f);
|
|
|
|
// Update external force
|
|
g_vertexForces[nodeID] = float4(forceOnVertex.xyz, 0.f);
|
|
|
|
g_vertexPositions[nodeID] = float4(position.xyz, 0.f);
|
|
}
|
|
}
|
|
|
|
|
|
MINICL_REGISTER(SolveCollisionsAndUpdateVelocitiesKernel);
|
|
|
|
|
|
|
|
|