Files
bullet3/src/BulletInverseDynamics/details/IDLinearMathInterface.hpp
Erwin Coumans ba8964c4ac [InverseDynamics] Support for Jacobians & derivatives
This change adds support for calculating Jacobians and
dot(Jacobian)*u terms, along with the required support for
the 3xN matrices in the standalone math library.
It also adds functions to compute kinematics only (position, velocity, accel).
To facilitate tests, the Cl also adds a RandomTreeCreator to create
randomized multibody trees.
Thanks to Thomas Buschmann for this contribution!
2016-08-25 16:24:28 -07:00

173 lines
4.5 KiB
C++

#ifndef IDLINEARMATHINTERFACE_HPP_
#define IDLINEARMATHINTERFACE_HPP_
#include <cstdlib>
#include "../IDConfig.hpp"
#include "../../LinearMath/btMatrix3x3.h"
#include "../../LinearMath/btVector3.h"
#include "../../LinearMath/btMatrixX.h"
#define BT_ID_HAVE_MAT3X
namespace btInverseDynamics {
class vec3;
class vecx;
class mat33;
typedef btMatrixX<idScalar> matxx;
class vec3 : public btVector3 {
public:
vec3() : btVector3() {}
vec3(const btVector3& btv) { *this = btv; }
idScalar& operator()(int i) { return (*this)[i]; }
const idScalar& operator()(int i) const { return (*this)[i]; }
const int size() const { return 3; }
const vec3& operator=(const btVector3& rhs) {
*static_cast<btVector3*>(this) = rhs;
return *this;
}
};
class mat33 : public btMatrix3x3 {
public:
mat33() : btMatrix3x3() {}
mat33(const btMatrix3x3& btm) { *this = btm; }
idScalar& operator()(int i, int j) { return (*this)[i][j]; }
const idScalar& operator()(int i, int j) const { return (*this)[i][j]; }
const mat33& operator=(const btMatrix3x3& rhs) {
*static_cast<btMatrix3x3*>(this) = rhs;
return *this;
}
friend mat33 operator*(const idScalar& s, const mat33& a);
friend mat33 operator/(const mat33& a, const idScalar& s);
};
inline mat33 operator/(const mat33& a, const idScalar& s) { return a * (1.0 / s); }
inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
class vecx : public btVectorX<idScalar> {
public:
vecx(int size) : btVectorX(size) {}
const vecx& operator=(const btVectorX<idScalar>& rhs) {
*static_cast<btVectorX*>(this) = rhs;
return *this;
}
idScalar& operator()(int i) { return (*this)[i]; }
const idScalar& operator()(int i) const { return (*this)[i]; }
friend vecx operator*(const vecx& a, const idScalar& s);
friend vecx operator*(const idScalar& s, const vecx& a);
friend vecx operator+(const vecx& a, const vecx& b);
friend vecx operator-(const vecx& a, const vecx& b);
friend vecx operator/(const vecx& a, const idScalar& s);
};
inline vecx operator*(const vecx& a, const idScalar& s) {
vecx result(a.size());
for (int i = 0; i < result.size(); i++) {
result(i) = a(i) * s;
}
return result;
}
inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
inline vecx operator+(const vecx& a, const vecx& b) {
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
if (a.size() != b.size()) {
error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
for (int i = 0; i < a.size(); i++) {
result(i) = a(i) + b(i);
}
return result;
}
inline vecx operator-(const vecx& a, const vecx& b) {
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
if (a.size() != b.size()) {
error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
for (int i = 0; i < a.size(); i++) {
result(i) = a(i) - b(i);
}
return result;
}
inline vecx operator/(const vecx& a, const idScalar& s) {
vecx result(a.size());
for (int i = 0; i < result.size(); i++) {
result(i) = a(i) / s;
}
return result;
}
// use btMatrixX to implement 3xX matrix
class mat3x : public matxx {
public:
mat3x(){}
mat3x(const mat3x&rhs) {
matxx::resize(rhs.rows(), rhs.cols());
*this = rhs;
}
mat3x(int rows, int cols): matxx(3,cols) {
}
void operator=(const mat3x& rhs) {
if (m_cols != rhs.m_cols) {
error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
abort();
}
for(int i=0;i<rows();i++) {
for(int k=0;k<cols();k++) {
setElem(i,k,rhs(i,k));
}
}
}
void setZero() {
matxx::setZero();
}
};
inline vec3 operator*(const mat3x& a, const vecx& b) {
vec3 result;
if (a.cols() != b.size()) {
error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
abort();
}
result(0)=0.0;
result(1)=0.0;
result(2)=0.0;
for(int i=0;i<b.size();i++) {
for(int k=0;k<3;k++) {
result(k)+=a(k,i)*b(i);
}
}
return result;
}
inline void resize(mat3x &m, idArrayIdx size) {
m.resize(3, size);
m.setZero();
}
inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
m->setElem(row, col, val);
}
inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
m->setElem(row, col, val);
}
}
#endif // IDLINEARMATHINTERFACE_HPP_