Files
bullet3/Demos/SoftDemo/SoftDemo.cpp
2008-03-30 23:22:30 +00:00

1287 lines
34 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSoftBody implementation by Nathanael Presson
#define DO_WALL 1
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#include "BMF_Api.h"
#include "../GimpactTestDemo/BunnyMesh.h"
#include "../GimpactTestDemo/TorusMesh.h"
#include <stdio.h> //printf debugging
static float gCollisionMargin = 0.05f/*0.05f*/;
#include "SoftDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
btTransform comOffset;
btVector3 comOffsetVec(0,2,0);
extern float eye[3];
extern int glutScreenWidth;
extern int glutScreenHeight;
const int maxProxies = 32766;
const int maxOverlap = 65535;
bool createConstraint = true;//false;
#ifdef CENTER_OF_MASS_SHIFT
bool useCompound = true;
#else
bool useCompound = false;
#endif
#ifdef _DEBUG
const int gNumObjects = 1;
#else
const int gNumObjects = 1;//try this in release mode: 3000. never go above 16384, unless you increate maxNumObjects value in DemoApplication.cp
#endif
const int maxNumObjects = 32760;
int shapeIndex[maxNumObjects];
#define CUBE_HALF_EXTENTS 1.5
#define EXTRA_HEIGHT -10.f
//
void SoftDemo::createStack( btCollisionShape* boxShape, float halfCubeSize, int size, float zPos )
{
btTransform trans;
trans.setIdentity();
for(int i=0; i<size; i++)
{
// This constructs a row, from left to right
int rowSize = size - i;
for(int j=0; j< rowSize; j++)
{
btVector4 pos;
pos.setValue(
-rowSize * halfCubeSize + halfCubeSize + j * 2.0f * halfCubeSize,
halfCubeSize + i * halfCubeSize * 2.0f,
zPos);
trans.setOrigin(pos);
btScalar mass = 1.f;
btRigidBody* body = 0;
body = localCreateRigidBody(mass,trans,boxShape);
#ifdef USER_DEFINED_FRICTION_MODEL
///Advanced use: override the friction solver
body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1;
#endif //USER_DEFINED_FRICTION_MODEL
}
}
}
////////////////////////////////////
//by default, Bullet will use its own nearcallback, but you can override it using dispatcher->setNearCallback()
void customNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
if (dispatcher.needsCollision(colObj0,colObj1))
{
//dispatcher will keep algorithms persistent in the collision pair
if (!collisionPair.m_algorithm)
{
collisionPair.m_algorithm = dispatcher.findAlgorithm(colObj0,colObj1);
}
if (collisionPair.m_algorithm)
{
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
float toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
//
// ISoftBody implementation
//
//
void SoftDemo::SoftBodyImpl::Attach(btSoftBody*)
{}
//
void SoftDemo::SoftBodyImpl::Detach(btSoftBody*)
{}
//
void SoftDemo::SoftBodyImpl::StartCollide(const btVector3&,const btVector3&)
{}
//
bool SoftDemo::SoftBodyImpl::CheckContactPrecise(const btVector3& x,
btSoftBody::ISoftBody::sCti& cti)
{
btScalar maxdepth=0;
btGjkEpaSolver2::sResults res;
btDynamicsWorld* pdw=pdemo->m_dynamicsWorld;
btCollisionObjectArray& coa=pdw->getCollisionObjectArray();
for(int i=0,ni=coa.size();i<ni;++i)
{
btRigidBody* prb=(btRigidBody*)(coa[i]);
btCollisionShape* shp=prb->getCollisionShape();
if(shp->isConvex())
{
btConvexShape* csh=static_cast<btConvexShape*>(shp);
const btTransform& wtr=prb->getWorldTransform();
const btScalar dst=btGjkEpaSolver2::SignedDistance(x,0.1,csh,wtr,res);
if(dst<maxdepth)
{
maxdepth = dst;
cti.m_body = prb;
cti.m_normal = res.normal;
cti.m_offset = -dot(cti.m_normal,res.witnesses[0]);
}
}
}
return(maxdepth<0);
}
//
bool SoftDemo::SoftBodyImpl::CheckContact( const btVector3& x,
btSoftBody::ISoftBody::sCti& cti)
{
btScalar maxdepth=0;
btGjkEpaSolver2::sResults res;
btDynamicsWorld* pdw=pdemo->m_dynamicsWorld;
btCollisionObjectArray& coa=pdw->getCollisionObjectArray();
for(int i=0,ni=coa.size();i<ni;++i)
{
btVector3 nrm;
btRigidBody* prb=(btRigidBody*)(coa[i]);
btCollisionShape* shp=prb->getCollisionShape();
btConvexShape* csh=static_cast<btConvexShape*>(shp);
const btTransform& wtr=prb->getWorldTransform();
btScalar dst=pdemo->m_sparsesdf.Evaluate(wtr.invXform(x),csh,nrm);
nrm=wtr.getBasis()*nrm;
btVector3 wit=x-nrm*dst;
if(dst<maxdepth)
{
maxdepth = dst;
cti.m_body = prb;
cti.m_normal = nrm;
cti.m_offset = -dot(cti.m_normal,wit);
}
}
return(maxdepth<0);
}
//
void SoftDemo::SoftBodyImpl::EndCollide()
{}
//
void SoftDemo::SoftBodyImpl::EvaluateMedium( const btVector3& x,
btSoftBody::ISoftBody::sMedium& medium)
{
medium.m_velocity = btVector3(0,0,0);
medium.m_pressure = 0;
medium.m_density = air_density;
if(water_density>0)
{
const btScalar depth=-(dot(x,water_normal)+water_offset);
if(depth>0)
{
medium.m_density = water_density;
medium.m_pressure = depth *
water_density *
pdemo->m_dynamicsWorld->getGravity().length();
}
}
}
extern int gNumManifold;
extern int gOverlappingPairs;
extern int gTotalContactPoints;
void SoftDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#ifdef USE_KINEMATIC_GROUND
//btQuaternion kinRotation(btVector3(0,0,1),0.);
btVector3 kinTranslation(-0.01,0,0);
//kinematic object
btCollisionObject* colObj = m_dynamicsWorld->getCollisionObjectArray()[0];
//is this a rigidbody with a motionstate? then use the motionstate to update positions!
if (btRigidBody::upcast(colObj) && btRigidBody::upcast(colObj)->getMotionState())
{
btTransform newTrans;
btRigidBody::upcast(colObj)->getMotionState()->getWorldTransform(newTrans);
newTrans.getOrigin()+=kinTranslation;
btRigidBody::upcast(colObj)->getMotionState()->setWorldTransform(newTrans);
} else
{
m_dynamicsWorld->getCollisionObjectArray()[0]->getWorldTransform().getOrigin() += kinTranslation;
}
#endif //USE_KINEMATIC_GROUND
float dt = getDeltaTimeMicroseconds() * 0.000001f;
// printf("dt = %f: ",dt);
if (m_dynamicsWorld)
{
#define FIXED_STEP 0
#ifdef FIXED_STEP
m_dynamicsWorld->stepSimulation(dt=1.0f/60.f,0);
#else
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 1;
if (m_idle)
dt = 1.0/420.f;
int numSimSteps = 0;
numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
#ifdef VERBOSE_TIMESTEPPING_CONSOLEOUTPUT
if (!numSimSteps)
printf("Interpolated transforms\n");
else
{
if (numSimSteps > maxSimSubSteps)
{
//detect dropping frames
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
} else
{
printf("Simulated (%i) steps\n",numSimSteps);
}
}
#endif //VERBOSE_TIMESTEPPING_CONSOLEOUTPUT
#endif
/* soft bodies */
for(int ib=0;ib<m_softbodies.size();++ib)
{
btSoftBody* psb=m_softbodies[ib];
psb->AddVelocity(m_dynamicsWorld->getGravity()*dt);
psb->Step(dt);
}
m_sparsesdf.GarbageCollect();
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
}
#ifdef USE_QUICKPROF
btProfiler::beginBlock("render");
#endif //USE_QUICKPROF
renderme();
//render the graphics objects, with center of mass shift
updateCamera();
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
#endif
glFlush();
//some additional debugging info
#ifdef PRINT_CONTACT_STATISTICS
printf("num manifolds: %i\n",gNumManifold);
printf("num gOverlappingPairs: %i\n",gOverlappingPairs);
printf("num gTotalContactPoints : %i\n",gTotalContactPoints );
#endif //PRINT_CONTACT_STATISTICS
gTotalContactPoints = 0;
glutSwapBuffers();
}
void SoftDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
glFlush();
glutSwapBuffers();
}
///User-defined friction model, the most simple friction model available: no friction
float myFrictionModel( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo )
{
//don't do any friction
return 0.f;
}
//
// Random
//
static inline btScalar UnitRand()
{
return(rand()/(btScalar)RAND_MAX);
}
static inline btScalar SignedUnitRand()
{
return(UnitRand()*2-1);
}
static inline btVector3 Vector3Rand()
{
const btVector3 p=btVector3(SignedUnitRand(),SignedUnitRand(),SignedUnitRand());
return(p.normalized());
}
//
// Rb rain
//
static void Ctor_RbUpStack(SoftDemo* pdemo,int count)
{
float mass=10;
btCollisionShape* shape[]={ new btSphereShape(1.5),
new btBoxShape(btVector3(1,1,1)),
new btCylinderShapeX(btVector3(4,1,1))};
static const int nshapes=sizeof(shape)/sizeof(shape[0]);
for(int i=0;i<count;++i)
{
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,1+6*i,0));
btRigidBody* body=pdemo->localCreateRigidBody(mass,startTransform,shape[i%nshapes]);
}
}
//
// Big ball
//
static void Ctor_BigBall(SoftDemo* pdemo,btScalar mass=10)
{
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,13,0));
btRigidBody* body=pdemo->localCreateRigidBody(mass,startTransform,new btSphereShape(3));
}
//
// Big plate
//
static void Ctor_BigPlate(SoftDemo* pdemo,btScalar mass=15)
{
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,4,0.5));
btRigidBody* body=pdemo->localCreateRigidBody(mass,startTransform,new btBoxShape(btVector3(5,1,5)));
body->setFriction(1);
}
//
// Linear stair
//
static void Ctor_LinearStair(SoftDemo* pdemo,const btVector3& org,const btVector3& sizes,btScalar angle,int count)
{
btBoxShape* shape=new btBoxShape(sizes);
for(int i=0;i<count;++i)
{
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(org+btVector3(sizes.x()*i*2,sizes.y()*i*2,0));
btRigidBody* body=pdemo->localCreateRigidBody(0,startTransform,shape);
body->setFriction(1);
}
}
//
// Softbox
//
static btSoftBody* Ctor_SoftBox(SoftDemo* pdemo,const btVector3& p,const btVector3& s)
{
const btVector3 h=s*0.5;
const btVector3 c[]={ p+h*btVector3(-1,-1,-1),
p+h*btVector3(+1,-1,-1),
p+h*btVector3(-1,+1,-1),
p+h*btVector3(+1,+1,-1),
p+h*btVector3(-1,-1,+1),
p+h*btVector3(+1,-1,+1),
p+h*btVector3(-1,+1,+1),
p+h*btVector3(+1,+1,+1)};
btSoftBody* psb=CreateFromConvexHull(&pdemo->m_softbodyimpl,c,8);
psb->GenerateBendingConstraints(2,1);
pdemo->m_softbodies.push_back(psb);
return(psb);
}
//
// SoftBoulder
//
static btSoftBody* Ctor_SoftBoulder(SoftDemo* pdemo,const btVector3& p,const btVector3& s,int np,int id)
{
btAlignedObjectArray<btVector3> pts;
if(id) srand(id);
for(int i=0;i<np;++i)
{
pts.push_back(Vector3Rand()*s+p);
}
btSoftBody* psb=CreateFromConvexHull(&pdemo->m_softbodyimpl,&pts[0],pts.size());
psb->GenerateBendingConstraints(2,1);
pdemo->m_softbodies.push_back(psb);
return(psb);
}
//#define TRACEDEMO { pdemo->demoname=__FUNCTION__+5;printf("Launching demo: " __FUNCTION__ "\r\n"); }
//
// Basic ropes
//
static void Init_Ropes(SoftDemo* pdemo)
{
//TRACEDEMO
const int n=15;
for(int i=0;i<n;++i)
{
btSoftBody* psb=CreateRope( &pdemo->m_softbodyimpl,
btVector3(-10,0,i*0.25),
btVector3(10,0,i*0.25),
16,
1+2);
psb->m_cfg.iterations = 4;
psb->m_cfg.kLST = 0.1+(i/(btScalar)(n-1))*0.9;
psb->SetTotalMass(20);
pdemo->m_softbodies.push_back(psb);
}
}
//
// Rope attach
//
static void Init_RopeAttach(SoftDemo* pdemo)
{
//TRACEDEMO
struct Functors
{
static btSoftBody* CtorRope(SoftDemo* pdemo,const btVector3& p)
{
btSoftBody* psb=CreateRope(&pdemo->m_softbodyimpl,
p,p+btVector3(10,0,0),8,1);
psb->m_cfg.kDF = 0;
psb->SetTotalMass(50);
pdemo->m_softbodies.push_back(psb);
return(psb);
}
};
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(12,8,0));
btRigidBody* body=pdemo->localCreateRigidBody(50,startTransform,new btBoxShape(btVector3(2,6,2)));
btSoftBody* psb0=Functors::CtorRope(pdemo,btVector3(0,8,-1));
btSoftBody* psb1=Functors::CtorRope(pdemo,btVector3(0,8,+1));
psb0->AppendAnchor(psb0->m_nodes.size()-1,body);
psb1->AppendAnchor(psb1->m_nodes.size()-1,body);
}
//
// Cloth attach
//
static void Init_ClothAttach(SoftDemo* pdemo)
{
//TRACEDEMO
const btScalar s=4;
const btScalar h=6;
const int r=9;
btSoftBody* psb=CreatePatch(&pdemo->m_softbodyimpl,
btVector3(-s,h,-s),
btVector3(+s,h,-s),
btVector3(-s,h,+s),
btVector3(+s,h,+s),r,r,4+8,true);
pdemo->m_softbodies.push_back(psb);
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,h,-(s+3.5)));
btRigidBody* body=pdemo->localCreateRigidBody(20,startTransform,new btBoxShape(btVector3(s,1,3)));
psb->AppendAnchor(0,body);
psb->AppendAnchor(r-1,body);
}
//
// Impact
//
static void Init_Impact(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateRope( &pdemo->m_softbodyimpl,
btVector3(0,0,0),
btVector3(0,-1,0),
0,
1);
pdemo->m_softbodies.push_back(psb);
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,20,0));
btRigidBody* body=pdemo->localCreateRigidBody(10,startTransform,new btBoxShape(btVector3(2,2,2)));
}
//
// Aerodynamic forces, 50x1g flyers
//
static void Init_Aero(SoftDemo* pdemo)
{
//TRACEDEMO
const btScalar s=2;
const btScalar h=10;
const int segments=6;
const int count=50;
for(int i=0;i<count;++i)
{
btSoftBody* psb=CreatePatch(&pdemo->m_softbodyimpl,
btVector3(-s,h,-s),
btVector3(+s,h,-s),
btVector3(-s,h,+s),
btVector3(+s,h,+s),
segments,segments,
0,true);
psb->GenerateBendingConstraints(2,1);
psb->m_cfg.kLF = 0.004;
psb->m_cfg.kDG = 0.0003;
psb->m_cfg.aeromodel = btSoftBody::eAeroModel::V_TwoSided;
btTransform trs;
btQuaternion rot;
btVector3 ra=Vector3Rand()*0.1;
btVector3 rp=Vector3Rand()*15+btVector3(0,20,80);
rot.setEuler(SIMD_PI/8+ra.x(),-SIMD_PI/7+ra.y(),ra.z());
trs.setIdentity();
trs.setOrigin(rp);
trs.setRotation(rot);
psb->Transform(trs);
psb->SetTotalMass(0.1);
psb->AddForce(btVector3(0,2,0),0);
pdemo->m_softbodies.push_back(psb);
}
pdemo->m_autocam=true;
}
//
// Friction
//
static void Init_Friction(SoftDemo* pdemo)
{
//TRACEDEMO
const btScalar bs=2;
const btScalar ts=bs+bs/4;
for(int i=0,ni=20;i<ni;++i)
{
const btVector3 p(-ni*ts/2+i*ts,-10+bs,40);
btSoftBody* psb=Ctor_SoftBox(pdemo,p,btVector3(bs,bs,bs));
psb->m_cfg.kDF = 0.1 * ((i+1)/(btScalar)ni);
psb->AddVelocity(btVector3(0,0,-10));
}
}
//
// Pressure
//
static void Init_Pressure(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateEllipsoid(&pdemo->m_softbodyimpl,
btVector3(35,25,0),
btVector3(1,1,1)*3,
512);
psb->m_cfg.kLST = 0.1;
psb->m_cfg.kDF = 1;
psb->m_cfg.kPR = 2500;
psb->SetTotalMass(30,true);
pdemo->m_softbodies.push_back(psb);
Ctor_BigPlate(pdemo);
Ctor_LinearStair(pdemo,btVector3(0,0,0),btVector3(2,1,5),0,10);
pdemo->m_autocam=true;
}
//
// Volume conservation
//
static void Init_Volume(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateEllipsoid(&pdemo->m_softbodyimpl,
btVector3(35,25,0),
btVector3(1,1,1)*3,
512);
psb->m_cfg.kLST = 0.45;
psb->m_cfg.kVC = 20;
psb->SetTotalMass(50,true);
psb->SetPose(true,false);
pdemo->m_softbodies.push_back(psb);
Ctor_BigPlate(pdemo);
Ctor_LinearStair(pdemo,btVector3(0,0,0),btVector3(2,1,5),0,10);
pdemo->m_autocam=true;
}
//
// Stick+Bending+Rb's
//
static void Init_Sticks(SoftDemo* pdemo)
{
//TRACEDEMO
const int n=16;
const int sg=4;
const btScalar sz=5;
const btScalar hg=4;
const btScalar in=1/(btScalar)(n-1);
for(int y=0;y<n;++y)
{
for(int x=0;x<n;++x)
{
const btVector3 org(-sz+sz*2*x*in,
-10,
-sz+sz*2*y*in);
btSoftBody* psb=CreateRope( &pdemo->m_softbodyimpl,
org,
org+btVector3(hg*0.001,hg,0),
sg,
1);
psb->m_cfg.iterations = 1;
psb->m_cfg.kDP = 0.005;
psb->m_cfg.kCHR = 0.1;
for(int i=0;i<3;++i)
{
psb->GenerateBendingConstraints(2+i,1);
}
psb->SetMass(1,0);
psb->SetTotalMass(0.01);
pdemo->m_softbodies.push_back(psb);
}
}
Ctor_BigBall(pdemo);
}
//
// 100kg cloth locked at corners, 10 falling 10kg rb's.
//
static void Init_Cloth(SoftDemo* pdemo)
{
//TRACEDEMO
const btScalar s=8;
btSoftBody* psb=CreatePatch(&pdemo->m_softbodyimpl,
btVector3(-s,0,-s),
btVector3(+s,0,-s),
btVector3(-s,0,+s),
btVector3(+s,0,+s),
31,31,
1+2+4+8,true);
psb->GenerateBendingConstraints(2,1);
psb->m_cfg.kLST = 0.4;
psb->SetTotalMass(150);
pdemo->m_softbodies.push_back(psb);
Ctor_RbUpStack(pdemo,10);
}
//
// 100kg Stanford's bunny
//
static void Init_Bunny(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateFromTriMesh( &pdemo->m_softbodyimpl,
gVerticesBunny,
&gIndicesBunny[0][0],
BUNNY_NUM_TRIANGLES);
psb->GenerateBendingConstraints(2,0.5);
psb->m_cfg.iterations = 2;
psb->m_cfg.kDF = 0.5;
psb->RandomizeConstraints();
psb->Scale(btVector3(6,6,6));
psb->SetTotalMass(100,true);
pdemo->m_softbodies.push_back(psb);
}
//
// 100kg Stanford's bunny with pose matching
//
static void Init_BunnyMatch(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateFromTriMesh( &pdemo->m_softbodyimpl,
gVerticesBunny,
&gIndicesBunny[0][0],
BUNNY_NUM_TRIANGLES);
psb->GenerateBendingConstraints(2,0.5);
psb->m_cfg.kDF = 0.5;
psb->m_cfg.kLST = 0.1;
psb->m_cfg.kMT = 0.01;
psb->RandomizeConstraints();
psb->Scale(btVector3(6,6,6));
psb->SetTotalMass(100,true);
psb->SetPose(true,true);
pdemo->m_softbodies.push_back(psb);
}
//
// 50Kg Torus
//
static void Init_Torus(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateFromTriMesh( &pdemo->m_softbodyimpl,
gVertices,
&gIndices[0][0],
NUM_TRIANGLES);
psb->GenerateBendingConstraints(2,1);
psb->m_cfg.iterations=2;
psb->RandomizeConstraints();
btMatrix3x3 m;
m.setEulerZYX(SIMD_PI/2,0,0);
psb->Transform(btTransform(m,btVector3(0,4,0)));
psb->Scale(btVector3(2,2,2));
psb->SetTotalMass(50,true);
pdemo->m_softbodies.push_back(psb);
}
//
// 50Kg Torus with pose matching
//
static void Init_TorusMatch(SoftDemo* pdemo)
{
//TRACEDEMO
btSoftBody* psb=CreateFromTriMesh( &pdemo->m_softbodyimpl,
gVertices,
&gIndices[0][0],
NUM_TRIANGLES);
psb->GenerateBendingConstraints(2,1);
psb->m_cfg.kLST=0.1;
psb->m_cfg.kMT=0.05;
psb->RandomizeConstraints();
btMatrix3x3 m;
m.setEulerZYX(SIMD_PI/2,0,0);
psb->Transform(btTransform(m,btVector3(0,4,0)));
psb->Scale(btVector3(2,2,2));
psb->SetTotalMass(50,true);
psb->SetPose(true,true);
pdemo->m_softbodies.push_back(psb);
}
static unsigned current_demo=0;
void SoftDemo::clientResetScene()
{
DemoApplication::clientResetScene();
/* Clean up */
for(int i=m_dynamicsWorld->getNumCollisionObjects()-1;i>0;i--)
{
btCollisionObject* obj=m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body=btRigidBody::upcast(obj);
if(body&&body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for(int i=0;i<m_softbodies.size();++i)
{
delete m_softbodies[i];
}
m_softbodies.clear();
m_sparsesdf.Reset();
/* Init */
void (*demofncs[])(SoftDemo*)=
{
Init_Cloth,
Init_Pressure,
Init_Volume,
Init_Ropes,
Init_RopeAttach,
Init_ClothAttach,
Init_Sticks,
Init_Impact,
Init_Aero,
Init_Friction,
Init_Torus,
Init_TorusMatch,
Init_Bunny,
Init_BunnyMatch,
};
current_demo=current_demo%(sizeof(demofncs)/sizeof(demofncs[0]));
m_softbodyimpl.air_density = (btScalar)1.2;
m_softbodyimpl.water_density = 0;
m_softbodyimpl.water_offset = 0;
m_softbodyimpl.water_normal = btVector3(0,0,0);
m_autocam = false;
demofncs[current_demo](this);
}
void SoftDemo::renderme()
{
DemoApplication::renderme();
btIDebugDraw* idraw=m_dynamicsWorld->getDebugDrawer();
/* Bodies */
btVector3 ps(0,0,0);
int nps=0;
for(int ib=0;ib<m_softbodies.size();++ib)
{
btSoftBody* psb=m_softbodies[ib];
nps+=psb->m_nodes.size();
for(int i=0;i<psb->m_nodes.size();++i)
{
ps+=psb->m_nodes[i].m_x;
}
DrawFrame(psb,idraw);
Draw(psb,idraw,fDrawFlags::Std);
}
ps/=nps;
if(m_autocam)
m_cameraTargetPosition+=(ps-m_cameraTargetPosition)*0.01;
else
m_cameraTargetPosition=btVector3(0,0,0);
/* Water level */
static const btVector3 axis[]={btVector3(1,0,0),
btVector3(0,1,0),
btVector3(0,0,1)};
if(m_softbodyimpl.water_density>0)
{
const btVector3 c= btVector3((btScalar)0.25,(btScalar)0.25,1);
const btScalar a= (btScalar)0.5;
const btVector3 n= m_softbodyimpl.water_normal;
const btVector3 o= -n*m_softbodyimpl.water_offset;
const btVector3 x= cross(n,axis[n.minAxis()]).normalized();
const btVector3 y= cross(x,n).normalized();
const btScalar s= 25;
idraw->drawTriangle(o-x*s-y*s,o+x*s-y*s,o+x*s+y*s,c,a);
idraw->drawTriangle(o-x*s-y*s,o+x*s+y*s,o-x*s+y*s,c,a);
}
}
void SoftDemo::keyboardCallback(unsigned char key, int x, int y)
{
switch(key)
{
case ']': ++current_demo;clientResetScene();break;
case '[': --current_demo;clientResetScene();break;
case ';': m_autocam=!m_autocam;break;
default: DemoApplication::keyboardCallback(key,x,y);
}
}
void SoftDemo::initPhysics()
{
#ifdef USE_PARALLEL_DISPATCHER
#ifdef WIN32
m_threadSupportSolver = 0;
m_threadSupportCollision = 0;
#endif //
#endif
//#define USE_GROUND_PLANE 1
#ifdef USE_GROUND_PLANE
m_collisionShapes.push_back(new btStaticPlaneShape(btVector3(0,1,0),0.5));
#else
///Please don't make the box sizes larger then 1000: the collision detection will be inaccurate.
///See http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=346
m_collisionShapes.push_back(new btBoxShape (btVector3(200,CUBE_HALF_EXTENTS,200)));
//m_collisionShapes.push_back(new btCylinderShapeZ (btVector3(5,5,5)));
//m_collisionShapes.push_back(new btSphereShape(5));
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
m_collisionShapes.push_back(new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
#else
m_collisionShapes.push_back(new btCylinderShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
setCameraDistance(32.5f);
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
m_azi = 90.f;
#endif //DO_BENCHMARK_PYRAMIDS
m_dispatcher=0;
m_collisionConfiguration = new btDefaultCollisionConfiguration();
#ifdef USE_PARALLEL_DISPATCHER
int maxNumOutstandingTasks = 4;
#ifdef USE_WIN32_THREADING
m_threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"collision",
processCollisionTask,
createCollisionLocalStoreMemory,
maxNumOutstandingTasks));
#else
#ifdef USE_LIBSPE2
spe_program_handle_t * program_handle;
#ifndef USE_CESOF
program_handle = spe_image_open ("./spuCollision.elf");
if (program_handle == NULL)
{
perror( "SPU OPEN IMAGE ERROR\n");
}
else
{
printf( "IMAGE OPENED\n");
}
#else
extern spe_program_handle_t spu_program;
program_handle = &spu_program;
#endif
SpuLibspe2Support* threadSupportCollision = new SpuLibspe2Support( program_handle, maxNumOutstandingTasks);
#endif //USE_LIBSPE2
///Playstation 3 SPU (SPURS) version is available through PS3 Devnet
/// For Unix/Mac someone could implement a pthreads version of btThreadSupportInterface?
///you can hook it up to your custom task scheduler by deriving from btThreadSupportInterface
#endif
m_dispatcher = new SpuGatheringCollisionDispatcher(m_threadSupportCollision,maxNumOutstandingTasks,m_collisionConfiguration);
// m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#else
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#endif //USE_PARALLEL_DISPATCHER
#ifdef USE_CUSTOM_NEAR_CALLBACK
//this is optional
m_dispatcher->setNearCallback(customNearCallback);
#endif
btVector3 worldAabbMin(-1000,-1000,-1000);
btVector3 worldAabbMax(1000,1000,1000);
m_broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
/// For large worlds or over 16384 objects, use the bt32BitAxisSweep3 broadphase
// m_broadphase = new bt32BitAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
/// When trying to debug broadphase issues, try to use the btSimpleBroadphase
// m_broadphase = new btSimpleBroadphase;
//box-box is in Extras/AlternativeCollisionAlgorithms:it requires inclusion of those files
#ifdef REGISTER_BOX_BOX
m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,new BoxBoxCollisionAlgorithm::CreateFunc);
#endif //REGISTER_BOX_BOX
#ifdef COMPARE_WITH_QUICKSTEP
m_solver = new OdeConstraintSolver();
#else
#ifdef USE_PARALLEL_SOLVER
m_threadSupportSolver = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"solver",
processSolverTask,
createSolverLocalStoreMemory,
maxNumOutstandingTasks));
m_solver = new btParallelSequentialImpulseSolver(m_threadSupportSolver,maxNumOutstandingTasks);
#else
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver();
m_solver = solver;
//default solverMode is SOLVER_RANDMIZE_ORDER. Warmstarting seems not to improve convergence, see
//solver->setSolverMode(0);//btSequentialImpulseConstraintSolver::SOLVER_USE_WARMSTARTING | btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
#endif //USE_PARALLEL_SOLVER
#endif
#ifdef USER_DEFINED_FRICTION_MODEL
//user defined friction model is not supported in 'cache friendly' solver yet, so switch to old solver
m_solver->setSolverMode(btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
#endif //USER_DEFINED_FRICTION_MODEL
btDiscreteDynamicsWorld* world = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = world;
#ifdef DO_BENCHMARK_PYRAMIDS
world->getSolverInfo().m_numIterations = 4;
#endif //DO_BENCHMARK_PYRAMIDS
m_dynamicsWorld->getDispatchInfo().m_enableSPU = true;
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
#ifdef USER_DEFINED_FRICTION_MODEL
{
//m_solver->setContactSolverFunc(ContactSolverFunc func,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
m_solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
m_solver->SetFrictionSolverFunc(myFrictionModel,DEFAULT_CONTACT_SOLVER_TYPE,USER_CONTACT_SOLVER_TYPE1);
m_solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,USER_CONTACT_SOLVER_TYPE1);
//m_physicsEnvironmentPtr->setNumIterations(2);
}
#endif //USER_DEFINED_FRICTION_MODEL
int i;
btTransform tr;
tr.setIdentity();
for (i=0;i<gNumObjects;i++)
{
if (i>0)
{
shapeIndex[i] = 1;//sphere
}
else
shapeIndex[i] = 0;
}
if (useCompound)
{
btCompoundShape* compoundShape = new btCompoundShape();
btCollisionShape* oldShape = m_collisionShapes[1];
m_collisionShapes[1] = compoundShape;
btVector3 sphereOffset(0,0,2);
comOffset.setIdentity();
#ifdef CENTER_OF_MASS_SHIFT
comOffset.setOrigin(comOffsetVec);
compoundShape->addChildShape(comOffset,oldShape);
#else
compoundShape->addChildShape(tr,oldShape);
tr.setOrigin(sphereOffset);
compoundShape->addChildShape(tr,new btSphereShape(0.9));
#endif
}
#ifdef DO_WALL
for (i=0;i<gNumObjects;i++)
{
btCollisionShape* shape = m_collisionShapes[shapeIndex[i]];
shape->setMargin(gCollisionMargin);
bool isDyna = i>0;
btTransform trans;
trans.setIdentity();
if (i>0)
{
//stack them
int colsize = 10;
int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS);
int row2 = row;
int col = (i)%(colsize)-colsize/2;
if (col>3)
{
col=11;
row2 |=1;
}
btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS,
row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0);
trans.setOrigin(pos);
} else
{
trans.setOrigin(btVector3(0,EXTRA_HEIGHT-CUBE_HALF_EXTENTS,0));
/*btQuaternion q;
q.setRotation(btVector3(1,0,0).normalized(),SIMD_PI/4);
trans.setRotation(q);*/
}
float mass = 1.f;
if (!isDyna)
mass = 0.f;
btRigidBody* body = localCreateRigidBody(mass,trans,shape);
#ifdef USE_KINEMATIC_GROUND
if (mass == 0.f)
{
body->setCollisionFlags( body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
body->setActivationState(DISABLE_DEACTIVATION);
}
#endif //USE_KINEMATIC_GROUND
// Only do CCD if motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS
body->setCcdSquareMotionThreshold( CUBE_HALF_EXTENTS );
//Experimental: better estimation of CCD Time of Impact:
body->setCcdSweptSphereRadius( 0.2*CUBE_HALF_EXTENTS );
#ifdef USER_DEFINED_FRICTION_MODEL
///Advanced use: override the friction solver
body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1;
#endif //USER_DEFINED_FRICTION_MODEL
}
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
btTransform trans;
trans.setIdentity();
btScalar halfExtents = CUBE_HALF_EXTENTS;
trans.setOrigin(btVector3(0,-halfExtents,0));
localCreateRigidBody(0.f,trans,m_collisionShapes[shapeIndex[0]]);
int numWalls = 15;
int wallHeight = 15;
float wallDistance = 3;
for (int i=0;i<numWalls;i++)
{
float zPos = (i-numWalls/2) * wallDistance;
createStack(m_collisionShapes[shapeIndex[1]],halfExtents,wallHeight,zPos);
}
// createStack(m_collisionShapes[shapeIndex[1]],halfExtends,20,10);
// createStack(m_collisionShapes[shapeIndex[1]],halfExtends,20,20);
#define DESTROYER_BALL 1
#ifdef DESTROYER_BALL
btTransform sphereTrans;
sphereTrans.setIdentity();
sphereTrans.setOrigin(btVector3(0,2,40));
btSphereShape* ball = new btSphereShape(2.f);
m_collisionShapes.push_back(ball);
btRigidBody* ballBody = localCreateRigidBody(10000.f,sphereTrans,ball);
ballBody->setLinearVelocity(btVector3(0,0,-10));
#endif
#endif //DO_BENCHMARK_PYRAMIDS
// clientResetScene();
m_softbodyimpl.pdemo=this;
m_sparsesdf.Initialize();
clientResetScene();
}
void SoftDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
m_collisionShapes[j] = 0;
delete shape;
}
//delete dynamics world
delete m_dynamicsWorld;
//delete solver
delete m_solver;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef WIN32
if (m_threadSupportSolver)
{
delete m_threadSupportSolver;
}
#endif
#endif
//delete broadphase
delete m_broadphase;
//delete dispatcher
delete m_dispatcher;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef WIN32
if (m_threadSupportCollision)
{
delete m_threadSupportCollision;
}
#endif
#endif
delete m_collisionConfiguration;
}