Files
bullet3/src/BulletCollision/CollisionDispatch/btCollisionDispatcher.cpp
2006-10-06 22:03:04 +00:00

315 lines
8.8 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btConvexConcaveCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include <algorithm>
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
int gNumManifold = 0;
#include <stdio.h>
btCollisionDispatcher::btCollisionDispatcher ():
m_useIslands(true),
m_count(0)
{
int i;
//default CreationFunctions, filling the m_doubleDispatch table
m_convexConvexCreateFunc = new btConvexConvexAlgorithm::CreateFunc;
m_convexConcaveCreateFunc = new btConvexConcaveCollisionAlgorithm::CreateFunc;
m_swappedConvexConcaveCreateFunc = new btConvexConcaveCollisionAlgorithm::SwappedCreateFunc;
m_compoundCreateFunc = new btCompoundCollisionAlgorithm::CreateFunc;
m_swappedCompoundCreateFunc = new btCompoundCollisionAlgorithm::SwappedCreateFunc;
m_emptyCreateFunc = new btEmptyAlgorithm::CreateFunc;
for (i=0;i<MAX_BROADPHASE_COLLISION_TYPES;i++)
{
for (int j=0;j<MAX_BROADPHASE_COLLISION_TYPES;j++)
{
m_doubleDispatch[i][j] = internalFindCreateFunc(i,j);
assert(m_doubleDispatch[i][j]);
}
}
};
void btCollisionDispatcher::registerCollisionCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc *createFunc)
{
m_doubleDispatch[proxyType0][proxyType1] = createFunc;
}
btCollisionDispatcher::~btCollisionDispatcher()
{
delete m_convexConvexCreateFunc;
delete m_convexConcaveCreateFunc;
delete m_swappedConvexConcaveCreateFunc;
delete m_compoundCreateFunc;
delete m_swappedCompoundCreateFunc;
delete m_emptyCreateFunc;
}
btPersistentManifold* btCollisionDispatcher::getNewManifold(void* b0,void* b1)
{
gNumManifold++;
//ASSERT(gNumManifold < 65535);
btCollisionObject* body0 = (btCollisionObject*)b0;
btCollisionObject* body1 = (btCollisionObject*)b1;
btPersistentManifold* manifold = new btPersistentManifold (body0,body1);
m_manifoldsPtr.push_back(manifold);
return manifold;
}
void btCollisionDispatcher::clearManifold(btPersistentManifold* manifold)
{
manifold->clearManifold();
}
void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold)
{
gNumManifold--;
//printf("releaseManifold: gNumManifold %d\n",gNumManifold);
clearManifold(manifold);
std::vector<btPersistentManifold*>::iterator i =
std::find(m_manifoldsPtr.begin(), m_manifoldsPtr.end(), manifold);
if (!(i == m_manifoldsPtr.end()))
{
std::swap(*i, m_manifoldsPtr.back());
m_manifoldsPtr.pop_back();
delete manifold;
}
}
btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(btCollisionObject* body0,btCollisionObject* body1)
{
#define USE_DISPATCH_REGISTRY_ARRAY 1
#ifdef USE_DISPATCH_REGISTRY_ARRAY
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher = this;
btCollisionAlgorithm* algo = m_doubleDispatch[body0->m_collisionShape->getShapeType()][body1->m_collisionShape->getShapeType()]
->CreateCollisionAlgorithm(ci,body0,body1);
#else
btCollisionAlgorithm* algo = internalFindAlgorithm(body0,body1);
#endif //USE_DISPATCH_REGISTRY_ARRAY
return algo;
}
btCollisionAlgorithmCreateFunc* btCollisionDispatcher::internalFindCreateFunc(int proxyType0,int proxyType1)
{
if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConvex(proxyType1))
{
return m_convexConvexCreateFunc;
}
if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConcave(proxyType1))
{
return m_convexConcaveCreateFunc;
}
if (btBroadphaseProxy::isConvex(proxyType1) && btBroadphaseProxy::isConcave(proxyType0))
{
return m_swappedConvexConcaveCreateFunc;
}
if (btBroadphaseProxy::isCompound(proxyType0))
{
return m_compoundCreateFunc;
} else
{
if (btBroadphaseProxy::isCompound(proxyType1))
{
return m_swappedCompoundCreateFunc;
}
}
//failed to find an algorithm
return m_emptyCreateFunc;
}
btCollisionAlgorithm* btCollisionDispatcher::internalFindAlgorithm(btCollisionObject* body0,btCollisionObject* body1)
{
m_count++;
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher = this;
if (body0->m_collisionShape->isConvex() && body1->m_collisionShape->isConvex() )
{
return new btConvexConvexAlgorithm(0,ci,body0,body1);
}
if (body0->m_collisionShape->isConvex() && body1->m_collisionShape->isConcave())
{
return new btConvexConcaveCollisionAlgorithm(ci,body0,body1,false);
}
if (body1->m_collisionShape->isConvex() && body0->m_collisionShape->isConcave())
{
return new btConvexConcaveCollisionAlgorithm(ci,body0,body1,true);
}
if (body0->m_collisionShape->isCompound())
{
return new btCompoundCollisionAlgorithm(ci,body0,body1,false);
} else
{
if (body1->m_collisionShape->isCompound())
{
return new btCompoundCollisionAlgorithm(ci,body0,body1,true);
}
}
//failed to find an algorithm
return new btEmptyAlgorithm(ci);
}
bool btCollisionDispatcher::needsResponse(btCollisionObject* body0,btCollisionObject* body1)
{
//here you can do filtering
bool hasResponse =
(body0->hasContactResponse() && body1->hasContactResponse());
hasResponse = hasResponse &&
(body0->IsActive() || body1->IsActive());
return hasResponse;
}
bool btCollisionDispatcher::needsCollision(btCollisionObject* body0,btCollisionObject* body1)
{
assert(body0);
assert(body1);
bool needsCollision = true;
//broadphase filtering already deals with this
if ((body0->isStaticObject() || body0->isKinematicObject()) &&
(body1->isStaticObject() || body1->isKinematicObject()))
{
printf("warning btCollisionDispatcher::needsCollision: static-static collision!\n");
}
if ((!body0->IsActive()) && (!body1->IsActive()))
needsCollision = false;
return needsCollision ;
}
///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc)
///this is useful for the collision dispatcher.
class btCollisionPairCallback : public btOverlapCallback
{
btDispatcherInfo& m_dispatchInfo;
btCollisionDispatcher* m_dispatcher;
int m_dispatcherId;
public:
btCollisionPairCallback(btDispatcherInfo& dispatchInfo,btCollisionDispatcher* dispatcher,int dispatcherId)
:m_dispatchInfo(dispatchInfo),
m_dispatcher(dispatcher),
m_dispatcherId(dispatcherId)
{
}
virtual bool processOverlap(btBroadphasePair& pair)
{
btCollisionObject* body0 = (btCollisionObject*)pair.m_pProxy0->m_clientObject;
btCollisionObject* body1 = (btCollisionObject*)pair.m_pProxy1->m_clientObject;
if (!m_dispatcher->needsCollision(body0,body1))
return false;
//dispatcher will keep algorithms persistent in the collision pair
if (!pair.m_algorithms[m_dispatcherId])
{
pair.m_algorithms[m_dispatcherId] = m_dispatcher->findAlgorithm(
body0,
body1);
}
if (pair.m_algorithms[m_dispatcherId])
{
btManifoldResult* resultOut = m_dispatcher->internalGetNewManifoldResult(body0,body1);
if (m_dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
pair.m_algorithms[m_dispatcherId]->processCollision(body0,body1,m_dispatchInfo,resultOut);
} else
{
float toi = pair.m_algorithms[m_dispatcherId]->calculateTimeOfImpact(body0,body1,m_dispatchInfo,resultOut);
if (m_dispatchInfo.m_timeOfImpact > toi)
m_dispatchInfo.m_timeOfImpact = toi;
}
m_dispatcher->internalReleaseManifoldResult(resultOut);
}
return false;
}
};
void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,btDispatcherInfo& dispatchInfo)
{
//m_blockedForChanges = true;
int dispatcherId = getUniqueId();
btCollisionPairCallback collisionCallback(dispatchInfo,this,dispatcherId);
pairCache->processAllOverlappingPairs(&collisionCallback);
//m_blockedForChanges = false;
}