Files
bullet3/examples/pybullet/gym/pybullet_envs/agents/visualize_ppo.py
Erwin Coumans e4a3b3fe38 add TensorFlow Agents PPO training script for various pybullet environments:
example:

python -m pybullet_envs.agents.train_ppo --config=pybullet_pendulum --logdir=pendulum
2017-09-27 10:20:38 -07:00

43 lines
1.2 KiB
Python

r"""Script to visualize the trained PPO agent.
python -m pybullet_envs.agents.visualize \
--logdir=ppo
--outdir=/tmp/video/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from agents.scripts import visualize
flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS
flags.DEFINE_string("logdir", None,
"Directory to the checkpoint of a training run.")
flags.DEFINE_string("outdir", None,
"Local directory for storing the monitoring outdir.")
flags.DEFINE_string("checkpoint", None,
"Checkpoint name to load; defaults to most recent.")
flags.DEFINE_integer("num_agents", 1,
"How many environments to step in parallel.")
flags.DEFINE_integer("num_episodes", 1, "Minimum number of episodes to render.")
flags.DEFINE_boolean(
"env_processes", False,
"Step environments in separate processes to circumvent the GIL.")
def main(_):
visualize.visualize(FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents,
FLAGS.num_episodes, FLAGS.checkpoint, FLAGS.env_processes)
if __name__ == "__main__":
tf.app.run()