Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
314 lines
11 KiB
C++
314 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
|
|
#define EIGEN_SUITESPARSEQRSUPPORT_H
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename MatrixType> class SPQR;
|
|
template<typename SPQRType> struct SPQRMatrixQReturnType;
|
|
template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
|
|
template <typename SPQRType, typename Derived> struct SPQR_QProduct;
|
|
namespace internal {
|
|
template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
|
|
{
|
|
typedef typename SPQRType::MatrixType ReturnType;
|
|
};
|
|
template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
|
|
{
|
|
typedef typename SPQRType::MatrixType ReturnType;
|
|
};
|
|
template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
|
|
{
|
|
typedef typename Derived::PlainObject ReturnType;
|
|
};
|
|
} // End namespace internal
|
|
|
|
/**
|
|
* \ingroup SPQRSupport_Module
|
|
* \class SPQR
|
|
* \brief Sparse QR factorization based on SuiteSparseQR library
|
|
*
|
|
* This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
|
|
* of sparse matrices. The result is then used to solve linear leasts_square systems.
|
|
* Clearly, a QR factorization is returned such that A*P = Q*R where :
|
|
*
|
|
* P is the column permutation. Use colsPermutation() to get it.
|
|
*
|
|
* Q is the orthogonal matrix represented as Householder reflectors.
|
|
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
|
|
* You can then apply it to a vector.
|
|
*
|
|
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
|
|
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
|
|
*
|
|
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
*
|
|
*/
|
|
template<typename _MatrixType>
|
|
class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
|
{
|
|
protected:
|
|
typedef SparseSolverBase<SPQR<_MatrixType> > Base;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef typename _MatrixType::Scalar Scalar;
|
|
typedef typename _MatrixType::RealScalar RealScalar;
|
|
typedef SuiteSparse_long StorageIndex ;
|
|
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
|
|
typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
|
|
enum {
|
|
ColsAtCompileTime = Dynamic,
|
|
MaxColsAtCompileTime = Dynamic
|
|
};
|
|
public:
|
|
SPQR()
|
|
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
|
{
|
|
cholmod_l_start(&m_cc);
|
|
}
|
|
|
|
explicit SPQR(const _MatrixType& matrix)
|
|
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
|
{
|
|
cholmod_l_start(&m_cc);
|
|
compute(matrix);
|
|
}
|
|
|
|
~SPQR()
|
|
{
|
|
SPQR_free();
|
|
cholmod_l_finish(&m_cc);
|
|
}
|
|
void SPQR_free()
|
|
{
|
|
cholmod_l_free_sparse(&m_H, &m_cc);
|
|
cholmod_l_free_sparse(&m_cR, &m_cc);
|
|
cholmod_l_free_dense(&m_HTau, &m_cc);
|
|
std::free(m_E);
|
|
std::free(m_HPinv);
|
|
}
|
|
|
|
void compute(const _MatrixType& matrix)
|
|
{
|
|
if(m_isInitialized) SPQR_free();
|
|
|
|
MatrixType mat(matrix);
|
|
|
|
/* Compute the default threshold as in MatLab, see:
|
|
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
|
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
|
*/
|
|
RealScalar pivotThreshold = m_tolerance;
|
|
if(m_useDefaultThreshold)
|
|
{
|
|
RealScalar max2Norm = 0.0;
|
|
for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
|
|
if(max2Norm==RealScalar(0))
|
|
max2Norm = RealScalar(1);
|
|
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
|
}
|
|
cholmod_sparse A;
|
|
A = viewAsCholmod(mat);
|
|
m_rows = matrix.rows();
|
|
Index col = matrix.cols();
|
|
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
|
|
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
|
|
|
|
if (!m_cR)
|
|
{
|
|
m_info = NumericalIssue;
|
|
m_isInitialized = false;
|
|
return;
|
|
}
|
|
m_info = Success;
|
|
m_isInitialized = true;
|
|
m_isRUpToDate = false;
|
|
}
|
|
/**
|
|
* Get the number of rows of the input matrix and the Q matrix
|
|
*/
|
|
inline Index rows() const {return m_rows; }
|
|
|
|
/**
|
|
* Get the number of columns of the input matrix.
|
|
*/
|
|
inline Index cols() const { return m_cR->ncol; }
|
|
|
|
template<typename Rhs, typename Dest>
|
|
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
|
{
|
|
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
|
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
|
|
|
//Compute Q^T * b
|
|
typename Dest::PlainObject y, y2;
|
|
y = matrixQ().transpose() * b;
|
|
|
|
// Solves with the triangular matrix R
|
|
Index rk = this->rank();
|
|
y2 = y;
|
|
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
|
|
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
|
|
|
|
// Apply the column permutation
|
|
// colsPermutation() performs a copy of the permutation,
|
|
// so let's apply it manually:
|
|
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
|
|
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
|
|
|
|
// y.bottomRows(y.rows()-rk).setZero();
|
|
// dest = colsPermutation() * y.topRows(cols());
|
|
|
|
m_info = Success;
|
|
}
|
|
|
|
/** \returns the sparse triangular factor R. It is a sparse matrix
|
|
*/
|
|
const MatrixType matrixR() const
|
|
{
|
|
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
|
if(!m_isRUpToDate) {
|
|
m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
|
|
m_isRUpToDate = true;
|
|
}
|
|
return m_R;
|
|
}
|
|
/// Get an expression of the matrix Q
|
|
SPQRMatrixQReturnType<SPQR> matrixQ() const
|
|
{
|
|
return SPQRMatrixQReturnType<SPQR>(*this);
|
|
}
|
|
/// Get the permutation that was applied to columns of A
|
|
PermutationType colsPermutation() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return PermutationType(m_E, m_cR->ncol);
|
|
}
|
|
/**
|
|
* Gets the rank of the matrix.
|
|
* It should be equal to matrixQR().cols if the matrix is full-rank
|
|
*/
|
|
Index rank() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_cc.SPQR_istat[4];
|
|
}
|
|
/// Set the fill-reducing ordering method to be used
|
|
void setSPQROrdering(int ord) { m_ordering = ord;}
|
|
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
|
void setPivotThreshold(const RealScalar& tol)
|
|
{
|
|
m_useDefaultThreshold = false;
|
|
m_tolerance = tol;
|
|
}
|
|
|
|
/** \returns a pointer to the SPQR workspace */
|
|
cholmod_common *cholmodCommon() const { return &m_cc; }
|
|
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was succesful,
|
|
* \c NumericalIssue if the sparse QR can not be computed
|
|
*/
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_info;
|
|
}
|
|
protected:
|
|
bool m_analysisIsOk;
|
|
bool m_factorizationIsOk;
|
|
mutable bool m_isRUpToDate;
|
|
mutable ComputationInfo m_info;
|
|
int m_ordering; // Ordering method to use, see SPQR's manual
|
|
int m_allow_tol; // Allow to use some tolerance during numerical factorization.
|
|
RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
|
|
mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
|
|
mutable MatrixType m_R; // The sparse matrix R in Eigen format
|
|
mutable StorageIndex *m_E; // The permutation applied to columns
|
|
mutable cholmod_sparse *m_H; //The householder vectors
|
|
mutable StorageIndex *m_HPinv; // The row permutation of H
|
|
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
|
mutable Index m_rank; // The rank of the matrix
|
|
mutable cholmod_common m_cc; // Workspace and parameters
|
|
bool m_useDefaultThreshold; // Use default threshold
|
|
Index m_rows;
|
|
template<typename ,typename > friend struct SPQR_QProduct;
|
|
};
|
|
|
|
template <typename SPQRType, typename Derived>
|
|
struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
|
|
{
|
|
typedef typename SPQRType::Scalar Scalar;
|
|
typedef typename SPQRType::StorageIndex StorageIndex;
|
|
//Define the constructor to get reference to argument types
|
|
SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
|
|
|
|
inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
|
|
inline Index cols() const { return m_other.cols(); }
|
|
// Assign to a vector
|
|
template<typename ResType>
|
|
void evalTo(ResType& res) const
|
|
{
|
|
cholmod_dense y_cd;
|
|
cholmod_dense *x_cd;
|
|
int method = m_transpose ? SPQR_QTX : SPQR_QX;
|
|
cholmod_common *cc = m_spqr.cholmodCommon();
|
|
y_cd = viewAsCholmod(m_other.const_cast_derived());
|
|
x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
|
|
res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
|
|
cholmod_l_free_dense(&x_cd, cc);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
const Derived& m_other;
|
|
bool m_transpose;
|
|
|
|
};
|
|
template<typename SPQRType>
|
|
struct SPQRMatrixQReturnType{
|
|
|
|
SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
|
|
template<typename Derived>
|
|
SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
|
|
{
|
|
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
|
|
}
|
|
SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
|
|
{
|
|
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
|
|
}
|
|
// To use for operations with the transpose of Q
|
|
SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
|
|
{
|
|
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
};
|
|
|
|
template<typename SPQRType>
|
|
struct SPQRMatrixQTransposeReturnType{
|
|
SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
|
|
template<typename Derived>
|
|
SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
|
|
{
|
|
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
};
|
|
|
|
}// End namespace Eigen
|
|
#endif
|