Files
bullet3/Extras/BulletMultiThreaded/SpuParallelSolver.cpp
ejcoumans 87df3d0f32 Based on feedback from another professional game company, there are several improvements, including some API change...
Some dynamic memory allocations have been replace by pool allocation or stack allocations.
quantized aabb versus quantized aabb overlap check is made branch-free (helps a lot on consoles PS3/XBox 360)
Collision algorithms are now created through a new btDefaultCollisionConfiguration, to decouple dependency (this is the API change):
Example:
	btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new	btCollisionDispatcher(collisionConfiguration);
2007-09-08 05:40:01 +00:00

569 lines
16 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library - Parallel solver
Copyright (c) 2007 Starbreeze Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Marten Svanfeldt
*/
#include "SpuParallelSolver.h"
//#include "SpuFakeDma.h"
#include "SpuSync.h"
#include "LinearMath/btVector3.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "LinearMath/btMinMax.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
#include "SpuSolverTask/SpuParallellSolverTask.h"
#include <stdio.h>
enum
{
PARALLEL_SOLVER_BODIES_PER_TASK = 64,
PARALLEL_SOLVER_CELLS_PER_TASK = SPU_HASH_NUMCELLS >> 3
};
//-- Hash handling
static void recordDependency(SpuSolverHash* hash, unsigned int i, unsigned int j)
{
hash->m_dependencyMatrix[i][j >> 5] |= (1 << (j & 31));
hash->m_dependencyMatrix[j][i >> 5] |= (1 << (i & 31));
}
// Clear the given hash
static void clearHash (SpuSolverHash* hash)
{
size_t hashSize = sizeof(SpuSolverHash);
memset(hash, 0, hashSize);
// Setup basic dependency
for (int i = 0; i < SPU_HASH_NUMCELLS; ++i)
{
hash->m_dependencyMatrix[i][i >> 5] |= (1 << (i & 31));
}
// Set some ones to "unused cells"
for (int i = SPU_HASH_WORDWIDTH-SPU_HASH_NUMUNUSEDBITS; i < SPU_HASH_WORDWIDTH; ++i)
{
hash->m_currentMask[0][SPU_HASH_NUMCELLDWORDS-1] |= (1 << i);
}
}
static bool getDependency(SpuSolverHash* hash, unsigned int i, unsigned int j)
{
return (hash->m_dependencyMatrix[i][j >> 5] & (1 << (j & 31))) != 0;
}
static unsigned int getObjectIndex (btCollisionObject* object)
{
btVector3 center = object->getWorldTransform().getOrigin();
int cx = (int)floorf(center.x() / SPU_HASH_PHYSSIZE);
int cy = (int)floorf(center.y() / SPU_HASH_PHYSSIZE);
int cz = (int)floorf(center.z() / SPU_HASH_PHYSSIZE);
return spuGetHashCellIndex(cx, cy, cz);
};
btParallelSequentialImpulseSolver::btParallelSequentialImpulseSolver (btThreadSupportInterface* threadIf, int maxOutstandingTasks)
: m_numberOfContacts(0), m_taskScheduler (threadIf, maxOutstandingTasks)
{
m_solverHash = new SpuSolverHash;
clearHash(m_solverHash);
}
btParallelSequentialImpulseSolver::~btParallelSequentialImpulseSolver ()
{
delete m_solverHash;
}
void btParallelSequentialImpulseSolver::prepareSolve(int numBodies, int numManifolds)
{
m_sortedManifolds.reserve(numManifolds);
m_allObjects.reserve(numBodies);
}
btScalar btParallelSequentialImpulseSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints, const btContactSolverInfo& info,class btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc,btDispatcher* dispatcher)
{
if (!numManifolds && !numConstraints)
return 0;
for (int i = 0; i < numManifolds; ++i)
{
btPersistentManifold* currManifold = manifold[i];
btRigidBody* rb0 = (btRigidBody*)currManifold->getBody0();
btRigidBody* rb1 = (btRigidBody*)currManifold->getBody1();
currManifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
}
// Record and mark the manifolds to the cells
for (int i = 0; i < numManifolds; ++i)
{
// Compute a hash cell for this manifold
btPersistentManifold* currManifold = manifold[i];
btCollisionObject *ownerObject, *otherObject;
btRigidBody* rb0 = (btRigidBody*)currManifold->getBody0();
btRigidBody* rb1 = (btRigidBody*)currManifold->getBody1();
if (rb0->getIslandTag() >= 0)
{
ownerObject = rb0;
otherObject = rb1;
}
else
{
ownerObject = rb1;
otherObject = rb0;
}
// Save the cell
unsigned int ownerCellIdx = getObjectIndex(ownerObject);
ManifoldCellHolder holder = {ownerCellIdx, currManifold};
m_sortedManifolds.push_back(holder);
m_solverHash->m_Hash[ownerCellIdx].m_numManifolds++;
// Record dependency
if (rb0->getIslandTag() >= 0 && rb1->getIslandTag() >= 0)
{
unsigned int otherCellIdx = getObjectIndex(otherObject);
recordDependency(m_solverHash, ownerCellIdx, otherCellIdx);
}
// Save statistics
int numContacts = currManifold->getNumContacts();
m_solverHash->m_Hash[ownerCellIdx].m_numContacts += numContacts;
m_numberOfContacts += numContacts;
}
// Record and mark constraints to the cells
for (int i = 0; i < numConstraints; ++i)
{
// Compute a hash cell for this manifold
btTypedConstraint* currConstraint = constraints[i];
if (!constraintTypeSupported(currConstraint->getConstraintType()))
continue;
btCollisionObject *ownerObject, *otherObject;
btRigidBody* rb0 = &currConstraint->getRigidBodyA();
btRigidBody* rb1 = &currConstraint->getRigidBodyB();
if (rb0->getIslandTag() >= 0)
{
ownerObject = rb0;
otherObject = rb1;
}
else
{
ownerObject = rb1;
otherObject = rb0;
}
// Save the cell
unsigned int ownerCellIdx = getObjectIndex(ownerObject);
ConstraintCellHolder holder = {ownerCellIdx, currConstraint->getConstraintType(), currConstraint};
m_sortedConstraints.push_back(holder);
m_solverHash->m_Hash[ownerCellIdx].m_numConstraints++;
// Record dependency
if (rb0 && rb1 && rb0->getIslandTag() >= 0 && rb1->getIslandTag() >= 0)
{
unsigned int otherCellIdx = getObjectIndex(otherObject);
recordDependency(m_solverHash, ownerCellIdx, otherCellIdx);
}
}
// Save all RBs
for (int i = 0; i < numBodies; ++i)
{
btCollisionObject* obj = bodies[i];
//unsigned int cellIdx = getObjectIndex(obj);
btRigidBody* rb = btRigidBody::upcast(obj);
m_allObjects.push_back(rb);
}
return 0;
}
template<typename T>
class CellHolderPredicate
{
public:
SIMD_FORCE_INLINE bool operator() ( const T& lhs, const T& rhs )
{
return lhs.m_hashCellIndex < rhs.m_hashCellIndex;
}
};
static void printDependencyMatrix(SpuSolverHash* hash)
{
for (int r = 0; r < SPU_HASH_NUMCELLS; ++r)
{
for (int c = 0; c < SPU_HASH_NUMCELLS; ++c)
{
if (getDependency(hash, r, c))
{
printf("1");
}
else
{
printf("0");
}
}
printf("\n");
}
printf("\n");
fflush(stdout);
}
// Solver caches
btAlignedObjectArray<SpuSolverBody> solverBodyPool_persist;
btAlignedObjectArray<uint32_t> solverBodyOffsetList_persist;
btAlignedObjectArray<SpuSolverInternalConstraint> solverInternalConstraintPool_persist;
btAlignedObjectArray<SpuSolverConstraint> solverConstraintPool_persist;
void btParallelSequentialImpulseSolver::allSolved (const btContactSolverInfo& info,class btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc)
{
if (!m_numberOfContacts && !m_sortedConstraints.size())
{
m_sortedManifolds.clear();
m_sortedConstraints.clear();
m_allObjects.clear();
clearHash(m_solverHash);
return;
}
//printDependencyMatrix(m_solverHash);
// Sort the manifolds list
int numManifolds = m_sortedManifolds.size();
m_sortedManifolds.heapSort(CellHolderPredicate<ManifoldCellHolder>());
// Sort the constraint list
int numConstraints = m_sortedConstraints.size();
m_sortedConstraints.heapSort(CellHolderPredicate<ConstraintCellHolder>());
// Sort the body list
int numBodies = m_allObjects.size();
// Reassign the hash offset
uint32_t emptyCellMask[SPU_HASH_NUMCELLDWORDS] = {0};
int numBodyOffsets = 0;
{
int manifoldRunner = 0;
int bodyOffsetRunner = 0;
int internalConstraintRunner = 0;
int constraintRunner = 0;
for (int i = 0; i < SPU_HASH_NUMCELLS; ++i)
{
bool empty = true;
SpuSolverHashCell& hashCell = m_solverHash->m_Hash[i];
hashCell.m_solverBodyOffsetListOffset = bodyOffsetRunner;
if (hashCell.m_numManifolds)
{
hashCell.m_manifoldListOffset = manifoldRunner;
manifoldRunner += hashCell.m_numManifolds;
bodyOffsetRunner += hashCell.m_numManifolds*2;
}
if (hashCell.m_numContacts)
{
hashCell.m_internalConstraintListOffset = internalConstraintRunner*3;
internalConstraintRunner += hashCell.m_numContacts;
empty = false;
}
if (hashCell.m_numConstraints)
{
hashCell.m_constraintListOffset = constraintRunner;
constraintRunner += hashCell.m_numConstraints;
bodyOffsetRunner += hashCell.m_numConstraints*2;
empty = false;
}
emptyCellMask[i >> 5] |= (empty ? (1 << (i&31)) : 0);
// Align the bodyOffsetRunner to a whole number of 4 for right alignment in the list
bodyOffsetRunner = (bodyOffsetRunner+3)&~0x3;
}
numBodyOffsets = bodyOffsetRunner;
}
// Setup rigid bodies
// Allocate temporary data
solverBodyPool_persist.resize(numBodies + numManifolds + numConstraints);
SpuSolverBody* solverBodyPool = &solverBodyPool_persist[0];
solverBodyOffsetList_persist.resize(numBodyOffsets);
uint32_t* solverBodyOffsetList = &solverBodyOffsetList_persist[0];
solverInternalConstraintPool_persist.resize(m_numberOfContacts*3);
SpuSolverInternalConstraint* solverInternalConstraintPool = &solverInternalConstraintPool_persist[0];
solverConstraintPool_persist.resize(numConstraints);
SpuSolverConstraint* solverConstraintPool = &solverConstraintPool_persist[0];
// Setup all the moving rigid bodies
{
int bodiesPerTask = PARALLEL_SOLVER_BODIES_PER_TASK;
int bodiesToSchedule = numBodies;
int startBody = 0;
while (bodiesToSchedule > 0)
{
// Schedule a bunch of hash cells
int numBodiesInTask = bodiesToSchedule > bodiesPerTask ? bodiesPerTask : bodiesToSchedule;
SpuSolverTaskDesc* desc = m_taskScheduler.getTask();
desc->m_solverCommand = CMD_SOLVER_SETUP_BODIES;
desc->m_solverData.m_solverHash = m_solverHash;
desc->m_solverData.m_solverBodyList = solverBodyPool;
desc->m_commandData.m_bodySetup.m_startBody = startBody;
desc->m_commandData.m_bodySetup.m_numBodies = numBodiesInTask;
desc->m_commandData.m_bodySetup.m_rbList = &m_allObjects[0];
m_taskScheduler.issueTask();
bodiesToSchedule -= numBodiesInTask;
startBody += numBodiesInTask;
}
m_taskScheduler.flushTasks();
}
// Manifold setup
{
int cellsPerTask = PARALLEL_SOLVER_CELLS_PER_TASK;
int cellsToSchedule = SPU_HASH_NUMCELLS;
int startCell = 0;
while (cellsToSchedule > 0)
{
int numCellsInTask = cellsToSchedule > cellsPerTask ? cellsPerTask : cellsToSchedule;
SpuSolverTaskDesc* desc = m_taskScheduler.getTask();
desc->m_solverCommand = CMD_SOLVER_MANIFOLD_SETUP;
desc->m_solverData.m_solverHash = m_solverHash;
desc->m_solverData.m_solverBodyList = solverBodyPool;
desc->m_solverData.m_solverBodyOffsetList = solverBodyOffsetList;
desc->m_solverData.m_solverInternalConstraintList = solverInternalConstraintPool;
desc->m_solverData.m_solverConstraintList = solverConstraintPool;
desc->m_commandData.m_manifoldSetup.m_startCell = startCell;
desc->m_commandData.m_manifoldSetup.m_numCells = numCellsInTask;
desc->m_commandData.m_manifoldSetup.m_numBodies = numBodies;
desc->m_commandData.m_manifoldSetup.m_numManifolds = numManifolds;
desc->m_commandData.m_manifoldSetup.m_manifoldHolders = &m_sortedManifolds[0];
desc->m_commandData.m_manifoldSetup.m_constraintHolders = &m_sortedConstraints[0];
desc->m_commandData.m_manifoldSetup.m_solverInfo = info;
m_taskScheduler.issueTask();
cellsToSchedule -= numCellsInTask;
startCell += numCellsInTask;
}
m_taskScheduler.flushTasks();
}
btSpinlock::SpinVariable* spinVar = (btSpinlock::SpinVariable*)btAlignedAlloc(sizeof(btSpinlock::SpinVariable), 128);
for (int iter = 0; iter < info.m_numIterations; ++iter)
{
btSpinlock lock (spinVar);
lock.Init();
// Clear the "processed cells" part of the hash
memcpy(m_solverHash->m_currentMask[0], emptyCellMask, sizeof(uint32_t)*SPU_HASH_NUMCELLDWORDS);
for (int task = 0; task < m_taskScheduler.getMaxOutstandingTasks(); ++task)
{
SpuSolverTaskDesc* desc = m_taskScheduler.getTask();
desc->m_solverCommand = CMD_SOLVER_SOLVE_ITERATE;
desc->m_solverData.m_solverHash = m_solverHash;
desc->m_solverData.m_solverBodyList = solverBodyPool;
desc->m_solverData.m_solverBodyOffsetList = solverBodyOffsetList;
desc->m_solverData.m_solverInternalConstraintList = solverInternalConstraintPool;
desc->m_solverData.m_solverConstraintList = solverConstraintPool;
desc->m_commandData.m_iterate.m_spinLockVar = spinVar;
m_taskScheduler.issueTask();
}
m_taskScheduler.flushTasks();
}
btAlignedFree((void*)spinVar);
// Write back velocity
{
int bodiesPerTask = PARALLEL_SOLVER_BODIES_PER_TASK;
int bodiesToSchedule = numBodies;
int startBody = 0;
while (bodiesToSchedule > 0)
{
// Schedule a bunch of hash cells
int numBodiesInTask = bodiesToSchedule > bodiesPerTask ? bodiesPerTask : bodiesToSchedule;
SpuSolverTaskDesc* desc = m_taskScheduler.getTask();
desc->m_solverCommand = CMD_SOLVER_COPYBACK_BODIES;
desc->m_solverData.m_solverHash = m_solverHash;
desc->m_solverData.m_solverBodyList = solverBodyPool;
desc->m_commandData.m_bodyCopyback.m_startBody = startBody;
desc->m_commandData.m_bodyCopyback.m_numBodies = numBodiesInTask;
desc->m_commandData.m_bodyCopyback.m_rbList = &m_allObjects[0];
m_taskScheduler.issueTask();
bodiesToSchedule -= numBodiesInTask;
startBody += numBodiesInTask;
}
m_taskScheduler.flushTasks();
}
// Clean up
m_sortedManifolds.resize(0);
m_sortedConstraints.resize(0);
m_allObjects.resize(0);
clearHash(m_solverHash);
m_numberOfContacts = 0;
}
void btParallelSequentialImpulseSolver::reset()
{
m_sortedManifolds.clear();
m_allObjects.clear();
m_numberOfContacts = 0;
clearHash(m_solverHash);
solverBodyPool_persist.clear();
solverBodyOffsetList_persist.clear();
solverConstraintPool_persist.clear();
solverInternalConstraintPool_persist.clear();
}
SolverTaskScheduler::SolverTaskScheduler(btThreadSupportInterface* threadIf, int maxOutstandingTasks)
: m_threadInterface (threadIf), m_maxNumOutstandingTasks (maxOutstandingTasks > SPU_MAX_SPUS ? SPU_MAX_SPUS : maxOutstandingTasks),
m_currentTask (0), m_numBusyTasks (0)
{
m_taskDescriptors.resize(m_maxNumOutstandingTasks);
m_taskBusy.resize(m_maxNumOutstandingTasks);
m_threadInterface->startSPU();
}
SolverTaskScheduler::~SolverTaskScheduler()
{
m_threadInterface->stopSPU();
}
SpuSolverTaskDesc* SolverTaskScheduler::getTask()
{
int taskIdx = -1;
if (m_taskBusy[m_currentTask])
{
//try to find a new one
for (unsigned int i = 0; i < m_maxNumOutstandingTasks; ++i)
{
if (!m_taskBusy[i])
{
taskIdx = i;
break;
}
}
if (taskIdx < 0)
{
// Have to wait
unsigned int taskId;
unsigned int outputSize;
m_threadInterface->waitForResponse(&taskId, &outputSize);
m_taskBusy[taskId] = false;
m_numBusyTasks--;
taskIdx = taskId;
}
m_currentTask = taskIdx;
}
SpuSolverTaskDesc* result = &m_taskDescriptors[m_currentTask];
memset(result, 0, sizeof(SpuSolverTaskDesc));
result->m_taskId = m_currentTask;
return result;
}
void SolverTaskScheduler::issueTask()
{
m_taskBusy[m_currentTask] = true;
m_numBusyTasks++;
SpuSolverTaskDesc& desc = m_taskDescriptors[m_currentTask];
m_threadInterface->sendRequest(1, (uint32_t)&desc, m_currentTask);
}
void SolverTaskScheduler::flushTasks()
{
while (m_numBusyTasks > 0)
{
unsigned int taskId;
unsigned int outputSize;
m_threadInterface->waitForResponse(&taskId, &outputSize);
m_taskBusy[taskId] = false;
m_numBusyTasks--;
}
}