171 lines
5.9 KiB
HLSL
171 lines
5.9 KiB
HLSL
MSTRINGIFY(
|
|
|
|
cbuffer SolvePositionsFromLinksKernelCB : register( b0 )
|
|
{
|
|
unsigned int numNodes;
|
|
float isolverdt;
|
|
int padding0;
|
|
int padding1;
|
|
};
|
|
|
|
struct CollisionObjectIndices
|
|
{
|
|
int firstObject;
|
|
int endObject;
|
|
};
|
|
|
|
struct CollisionShapeDescription
|
|
{
|
|
float4x4 shapeTransform;
|
|
float4 linearVelocity;
|
|
float4 angularVelocity;
|
|
|
|
int softBodyIdentifier;
|
|
int collisionShapeType;
|
|
|
|
|
|
// Shape information
|
|
// Compressed from the union
|
|
float radius;
|
|
float halfHeight;
|
|
|
|
float margin;
|
|
float friction;
|
|
|
|
int padding0;
|
|
int padding1;
|
|
|
|
};
|
|
|
|
// From btBroadphaseProxy.h
|
|
static const int CAPSULE_SHAPE_PROXYTYPE = 10;
|
|
|
|
// Node indices for each link
|
|
StructuredBuffer<int> g_vertexClothIdentifier : register( t0 );
|
|
StructuredBuffer<float4> g_vertexPreviousPositions : register( t1 );
|
|
StructuredBuffer<float> g_perClothFriction : register( t2 );
|
|
StructuredBuffer<float> g_clothDampingFactor : register( t3 );
|
|
StructuredBuffer<CollisionObjectIndices> g_perClothCollisionObjectIndices : register( t4 );
|
|
StructuredBuffer<CollisionShapeDescription> g_collisionObjectDetails : register( t5 );
|
|
|
|
RWStructuredBuffer<float4> g_vertexForces : register( u0 );
|
|
RWStructuredBuffer<float4> g_vertexVelocities : register( u1 );
|
|
RWStructuredBuffer<float4> g_vertexPositions : register( u2 );
|
|
|
|
[numthreads(128, 1, 1)]
|
|
void
|
|
SolveCollisionsAndUpdateVelocitiesKernel( uint3 Gid : SV_GroupID, uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uint GI : SV_GroupIndex )
|
|
{
|
|
int nodeID = DTid.x;
|
|
float3 forceOnVertex = float3(0.f, 0.f, 0.f);
|
|
if( DTid.x < numNodes )
|
|
{
|
|
int clothIdentifier = g_vertexClothIdentifier[nodeID];
|
|
float4 position = float4(g_vertexPositions[nodeID].xyz, 1.f);
|
|
float4 previousPosition = float4(g_vertexPreviousPositions[nodeID].xyz, 1.f);
|
|
float3 velocity;
|
|
float clothFriction = g_perClothFriction[clothIdentifier];
|
|
float dampingFactor = g_clothDampingFactor[clothIdentifier];
|
|
float velocityCoefficient = (1.f - dampingFactor);
|
|
CollisionObjectIndices collisionObjectIndices = g_perClothCollisionObjectIndices[clothIdentifier];
|
|
|
|
if( collisionObjectIndices.firstObject != collisionObjectIndices.endObject )
|
|
{
|
|
velocity = float3(15, 0, 0);
|
|
|
|
// We have some possible collisions to deal with
|
|
for( int collision = collisionObjectIndices.firstObject; collision < collisionObjectIndices.endObject; ++collision )
|
|
{
|
|
CollisionShapeDescription shapeDescription = g_collisionObjectDetails[collision];
|
|
float colliderFriction = shapeDescription.friction;
|
|
|
|
if( shapeDescription.collisionShapeType == CAPSULE_SHAPE_PROXYTYPE )
|
|
{
|
|
// Colliding with a capsule
|
|
|
|
float capsuleHalfHeight = shapeDescription.halfHeight;
|
|
float capsuleRadius = shapeDescription.radius;
|
|
float capsuleMargin = shapeDescription.margin;
|
|
float4x4 worldTransform = shapeDescription.shapeTransform;
|
|
|
|
float4 c1 = float4(0.f, -capsuleHalfHeight, 0.f, 1.f);
|
|
float4 c2 = float4(0.f, +capsuleHalfHeight, 0.f, 1.f);
|
|
float4 worldC1 = mul(worldTransform, c1);
|
|
float4 worldC2 = mul(worldTransform, c2);
|
|
float3 segment = (worldC2 - worldC1).xyz;
|
|
|
|
// compute distance of tangent to vertex along line segment in capsule
|
|
float distanceAlongSegment = -( dot( (worldC1 - position).xyz, segment ) / dot(segment, segment) );
|
|
|
|
float4 closestPoint = (worldC1 + float4(segment * distanceAlongSegment, 0.f));
|
|
float distanceFromLine = length(position - closestPoint);
|
|
float distanceFromC1 = length(worldC1 - position);
|
|
float distanceFromC2 = length(worldC2 - position);
|
|
|
|
// Final distance from collision, point to push from, direction to push in
|
|
// for impulse force
|
|
float dist;
|
|
float3 normalVector;
|
|
if( distanceAlongSegment < 0 )
|
|
{
|
|
dist = distanceFromC1;
|
|
normalVector = normalize(position - worldC1).xyz;
|
|
} else if( distanceAlongSegment > 1.f ) {
|
|
dist = distanceFromC2;
|
|
normalVector = normalize(position - worldC2).xyz;
|
|
} else {
|
|
dist = distanceFromLine;
|
|
normalVector = normalize(position - closestPoint).xyz;
|
|
}
|
|
|
|
float3 colliderLinearVelocity = shapeDescription.linearVelocity.xyz;
|
|
float3 colliderAngularVelocity = shapeDescription.angularVelocity.xyz;
|
|
float3 velocityOfSurfacePoint = colliderLinearVelocity + cross(colliderAngularVelocity, position.xyz - worldTransform._m03_m13_m23);
|
|
|
|
float minDistance = capsuleRadius + capsuleMargin;
|
|
|
|
// In case of no collision, this is the value of velocity
|
|
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
|
|
|
|
|
|
// Check for a collision
|
|
if( dist < minDistance )
|
|
{
|
|
// Project back to surface along normal
|
|
position = position + float4((minDistance - dist)*normalVector*0.9, 0.f);
|
|
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
|
|
float3 relativeVelocity = velocity - velocityOfSurfacePoint;
|
|
|
|
float3 p1 = normalize(cross(normalVector, segment));
|
|
float3 p2 = normalize(cross(p1, normalVector));
|
|
// Full friction is sum of velocities in each direction of plane
|
|
float3 frictionVector = p1*dot(relativeVelocity, p1) + p2*dot(relativeVelocity, p2);
|
|
|
|
// Real friction is peak friction corrected by friction coefficients
|
|
frictionVector = frictionVector * (colliderFriction*clothFriction);
|
|
|
|
float approachSpeed = dot(relativeVelocity, normalVector);
|
|
|
|
if( approachSpeed <= 0.0 )
|
|
forceOnVertex -= frictionVector;
|
|
}
|
|
|
|
}
|
|
}
|
|
} else {
|
|
// Update velocity
|
|
float3 difference = position.xyz - previousPosition.xyz;
|
|
velocity = difference*velocityCoefficient*isolverdt;
|
|
}
|
|
|
|
g_vertexVelocities[nodeID] = float4(velocity, 0.f);
|
|
|
|
// Update external force
|
|
g_vertexForces[nodeID] = float4(forceOnVertex, 0.f);
|
|
|
|
g_vertexPositions[nodeID] = float4(position.xyz, 0.f);
|
|
}
|
|
}
|
|
|
|
);
|