Files
bullet3/src/BulletMultiThreaded/SpuNarrowPhaseCollisionTask/boxBoxDistance.cpp
erwin.coumans e6202f58ad 1)Added SCE Physics Effects boxBoxDistance
BulletMultiThreaded/NarrowPhaseCollision makes use of this boxBoxDistance.
Cache some values in src/BulletMultiThreaded/SpuContactManifoldCollisionAlgorithm.cpp, to avoid DMA transfers

2) Added btConvexSeparatingDistanceUtil: this allows caching of separating distance/vector as early-out to avoid convex-convex collision detection.
btConvexSeparatingDistanceUtil is used in src/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp and can be controlled by btDispatcherInfo.m_useConvexConservativeDistanceUtil/m_convexConservativeDistanceThreshold

3) Use BulletMultiThreaded/vectormath/scalar/cpp/vectormath/scalar/cpp/vectormath_aos.h as fallback for non-PlayStation 3 Cell SPU/PPU platforms (used by boxBoxDistance).
Note there are other implementations in Extras/vectormath folder, that are potentially faster for IBM Cell SDK 3.0 SPU (libspe2)
2008-10-20 20:12:39 +00:00

1154 lines
41 KiB
C++
Raw Blame History

/*
Copyright (C) 2006, 2008 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "Box.h"
static inline float sqr( float a )
{
return (a * a);
}
enum BoxSepAxisType
{
A_AXIS, B_AXIS, CROSS_AXIS
};
//-------------------------------------------------------------------------------------------------
// voronoiTol: bevels Voronoi planes slightly which helps when features are parallel.
//-------------------------------------------------------------------------------------------------
static const float voronoiTol = -1.0e-5f;
//-------------------------------------------------------------------------------------------------
// separating axis tests: gaps along each axis are computed, and the axis with the maximum
// gap is stored. cross product axes are normalized.
//-------------------------------------------------------------------------------------------------
#define AaxisTest( dim, letter, first ) \
{ \
if ( first ) \
{ \
maxGap = gap = gapsA.get##letter(); \
if ( gap > distanceThreshold ) return gap; \
axisType = A_AXIS; \
faceDimA = dim; \
axisA = identity.getCol##dim(); \
} \
else \
{ \
gap = gapsA.get##letter(); \
if ( gap > distanceThreshold ) return gap; \
else if ( gap > maxGap ) \
{ \
maxGap = gap; \
axisType = A_AXIS; \
faceDimA = dim; \
axisA = identity.getCol##dim(); \
} \
} \
}
#define BaxisTest( dim, letter ) \
{ \
gap = gapsB.get##letter(); \
if ( gap > distanceThreshold ) return gap; \
else if ( gap > maxGap ) \
{ \
maxGap = gap; \
axisType = B_AXIS; \
faceDimB = dim; \
axisB = identity.getCol##dim(); \
} \
}
#define CrossAxisTest( dima, dimb, letterb ) \
{ \
const float lsqr_tolerance = 1.0e-30f; \
float lsqr; \
\
lsqr = lsqrs.getCol##dima().get##letterb(); \
\
if ( lsqr > lsqr_tolerance ) \
{ \
float l_recip = 1.0f / sqrtf( lsqr ); \
gap = float(gapsAxB.getCol##dima().get##letterb()) * l_recip; \
\
if ( gap > distanceThreshold ) \
{ \
return gap; \
} \
\
if ( gap > maxGap ) \
{ \
maxGap = gap; \
axisType = CROSS_AXIS; \
edgeDimA = dima; \
edgeDimB = dimb; \
axisA = cross(identity.getCol##dima(),matrixAB.getCol##dimb()) * l_recip; \
} \
} \
}
//-------------------------------------------------------------------------------------------------
// tests whether a vertex of box B and a face of box A are the closest features
//-------------------------------------------------------------------------------------------------
inline
float
VertexBFaceATest(
bool & inVoronoi,
float & t0,
float & t1,
const Vector3 & hA,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsB,
Vector3 scalesB )
{
// compute a corner of box B in A's coordinate system
Vector3 corner =
Vector3( faceOffsetAB + matrixAB.getCol0() * scalesB.getX() + matrixAB.getCol1() * scalesB.getY() );
// compute the parameters of the point on A, closest to this corner
t0 = corner[0];
t1 = corner[1];
if ( t0 > hA[0] )
t0 = hA[0];
else if ( t0 < -hA[0] )
t0 = -hA[0];
if ( t1 > hA[1] )
t1 = hA[1];
else if ( t1 < -hA[1] )
t1 = -hA[1];
// do the Voronoi test: already know the point on B is in the Voronoi region of the
// point on A, check the reverse.
Vector3 facePointB =
Vector3( mulPerElem( faceOffsetBA + matrixBA.getCol0() * t0 + matrixBA.getCol1() * t1 - scalesB, signsB ) );
inVoronoi = ( ( facePointB[0] >= voronoiTol * facePointB[2] ) &&
( facePointB[1] >= voronoiTol * facePointB[0] ) &&
( facePointB[2] >= voronoiTol * facePointB[1] ) );
return (sqr( corner[0] - t0 ) + sqr( corner[1] - t1 ) + sqr( corner[2] ));
}
#define VertexBFaceA_SetNewMin() \
{ \
minDistSqr = distSqr; \
localPointA.setX(t0); \
localPointA.setY(t1); \
localPointB.setX( scalesB.getX() ); \
localPointB.setY( scalesB.getY() ); \
featureA = F; \
featureB = V; \
}
void
VertexBFaceATests(
bool & done,
float & minDistSqr,
Point3 & localPointA,
Point3 & localPointB,
FeatureType & featureA,
FeatureType & featureB,
const Vector3 & hA,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsB,
Vector3 scalesB,
bool first )
{
float t0, t1;
float distSqr;
distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsB, scalesB );
if ( first ) {
VertexBFaceA_SetNewMin();
} else {
if ( distSqr < minDistSqr ) {
VertexBFaceA_SetNewMin();
}
}
if ( done )
return;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsB, scalesB );
if ( distSqr < minDistSqr ) {
VertexBFaceA_SetNewMin();
}
if ( done )
return;
signsB.setY( -signsB.getY() );
scalesB.setY( -scalesB.getY() );
distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsB, scalesB );
if ( distSqr < minDistSqr ) {
VertexBFaceA_SetNewMin();
}
if ( done )
return;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = VertexBFaceATest( done, t0, t1, hA, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsB, scalesB );
if ( distSqr < minDistSqr ) {
VertexBFaceA_SetNewMin();
}
}
//-------------------------------------------------------------------------------------------------
// VertexAFaceBTest: tests whether a vertex of box A and a face of box B are the closest features
//-------------------------------------------------------------------------------------------------
inline
float
VertexAFaceBTest(
bool & inVoronoi,
float & t0,
float & t1,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 scalesA )
{
Vector3 corner =
Vector3( faceOffsetBA + matrixBA.getCol0() * scalesA.getX() + matrixBA.getCol1() * scalesA.getY() );
t0 = corner[0];
t1 = corner[1];
if ( t0 > hB[0] )
t0 = hB[0];
else if ( t0 < -hB[0] )
t0 = -hB[0];
if ( t1 > hB[1] )
t1 = hB[1];
else if ( t1 < -hB[1] )
t1 = -hB[1];
Vector3 facePointA =
Vector3( mulPerElem( faceOffsetAB + matrixAB.getCol0() * t0 + matrixAB.getCol1() * t1 - scalesA, signsA ) );
inVoronoi = ( ( facePointA[0] >= voronoiTol * facePointA[2] ) &&
( facePointA[1] >= voronoiTol * facePointA[0] ) &&
( facePointA[2] >= voronoiTol * facePointA[1] ) );
return (sqr( corner[0] - t0 ) + sqr( corner[1] - t1 ) + sqr( corner[2] ));
}
#define VertexAFaceB_SetNewMin() \
{ \
minDistSqr = distSqr; \
localPointB.setX(t0); \
localPointB.setY(t1); \
localPointA.setX( scalesA.getX() ); \
localPointA.setY( scalesA.getY() ); \
featureA = V; \
featureB = F; \
}
void
VertexAFaceBTests(
bool & done,
float & minDistSqr,
Point3 & localPointA,
Point3 & localPointB,
FeatureType & featureA,
FeatureType & featureB,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 scalesA,
bool first )
{
float t0, t1;
float distSqr;
distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, scalesA );
if ( first ) {
VertexAFaceB_SetNewMin();
} else {
if ( distSqr < minDistSqr ) {
VertexAFaceB_SetNewMin();
}
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, scalesA );
if ( distSqr < minDistSqr ) {
VertexAFaceB_SetNewMin();
}
if ( done )
return;
signsA.setY( -signsA.getY() );
scalesA.setY( -scalesA.getY() );
distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, scalesA );
if ( distSqr < minDistSqr ) {
VertexAFaceB_SetNewMin();
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = VertexAFaceBTest( done, t0, t1, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, scalesA );
if ( distSqr < minDistSqr ) {
VertexAFaceB_SetNewMin();
}
}
//-------------------------------------------------------------------------------------------------
// EdgeEdgeTest:
//
// tests whether a pair of edges are the closest features
//
// note on the shorthand:
// 'a' & 'b' refer to the edges.
// 'c' is the dimension of the axis that points from the face center to the edge Center
// 'd' is the dimension of the edge Direction
// the dimension of the face normal is 2
//-------------------------------------------------------------------------------------------------
#define EdgeEdgeTest( ac, ac_letter, ad, ad_letter, bc, bc_letter, bd, bd_letter ) \
{ \
Vector3 edgeOffsetAB; \
Vector3 edgeOffsetBA; \
\
edgeOffsetAB = faceOffsetAB + matrixAB.getCol##bc() * scalesB.get##bc_letter(); \
edgeOffsetAB.set##ac_letter( edgeOffsetAB.get##ac_letter() - scalesA.get##ac_letter() ); \
\
edgeOffsetBA = faceOffsetBA + matrixBA.getCol##ac() * scalesA.get##ac_letter(); \
edgeOffsetBA.set##bc_letter( edgeOffsetBA.get##bc_letter() - scalesB.get##bc_letter() ); \
\
float dirDot = matrixAB.getCol##bd().get##ad_letter(); \
float denom = 1.0f - dirDot*dirDot; \
float edgeOffsetAB_ad = edgeOffsetAB.get##ad_letter(); \
float edgeOffsetBA_bd = edgeOffsetBA.get##bd_letter(); \
\
if ( denom == 0.0f ) \
{ \
tA = 0.0f; \
} \
else \
{ \
tA = ( edgeOffsetAB_ad + edgeOffsetBA_bd * dirDot ) / denom; \
} \
\
if ( tA < -hA[ad] ) tA = -hA[ad]; \
else if ( tA > hA[ad] ) tA = hA[ad]; \
\
tB = tA * dirDot + edgeOffsetBA_bd; \
\
if ( tB < -hB[bd] ) \
{ \
tB = -hB[bd]; \
tA = tB * dirDot + edgeOffsetAB_ad; \
\
if ( tA < -hA[ad] ) tA = -hA[ad]; \
else if ( tA > hA[ad] ) tA = hA[ad]; \
} \
else if ( tB > hB[bd] ) \
{ \
tB = hB[bd]; \
tA = tB * dirDot + edgeOffsetAB_ad; \
\
if ( tA < -hA[ad] ) tA = -hA[ad]; \
else if ( tA > hA[ad] ) tA = hA[ad]; \
} \
\
Vector3 edgeOffAB = Vector3( mulPerElem( edgeOffsetAB + matrixAB.getCol##bd() * tB, signsA ) );\
Vector3 edgeOffBA = Vector3( mulPerElem( edgeOffsetBA + matrixBA.getCol##ad() * tA, signsB ) );\
\
inVoronoi = ( edgeOffAB[ac] >= voronoiTol * edgeOffAB[2] ) && \
( edgeOffAB[2] >= voronoiTol * edgeOffAB[ac] ) && \
( edgeOffBA[bc] >= voronoiTol * edgeOffBA[2] ) && \
( edgeOffBA[2] >= voronoiTol * edgeOffBA[bc] ); \
\
edgeOffAB[ad] -= tA; \
edgeOffBA[bd] -= tB; \
\
return dot(edgeOffAB,edgeOffAB); \
}
float
EdgeEdgeTest_0101(
bool & inVoronoi,
float & tA,
float & tB,
const Vector3 & hA,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 signsB,
Vector3 scalesA,
Vector3 scalesB )
{
EdgeEdgeTest( 0, X, 1, Y, 0, X, 1, Y );
}
float
EdgeEdgeTest_0110(
bool & inVoronoi,
float & tA,
float & tB,
const Vector3 & hA,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 signsB,
Vector3 scalesA,
Vector3 scalesB )
{
EdgeEdgeTest( 0, X, 1, Y, 1, Y, 0, X );
}
float
EdgeEdgeTest_1001(
bool & inVoronoi,
float & tA,
float & tB,
const Vector3 & hA,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 signsB,
Vector3 scalesA,
Vector3 scalesB )
{
EdgeEdgeTest( 1, Y, 0, X, 0, X, 1, Y );
}
float
EdgeEdgeTest_1010(
bool & inVoronoi,
float & tA,
float & tB,
const Vector3 & hA,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 signsB,
Vector3 scalesA,
Vector3 scalesB )
{
EdgeEdgeTest( 1, Y, 0, X, 1, Y, 0, X );
}
#define EdgeEdge_SetNewMin( ac_letter, ad_letter, bc_letter, bd_letter ) \
{ \
minDistSqr = distSqr; \
localPointA.set##ac_letter(scalesA.get##ac_letter()); \
localPointA.set##ad_letter(tA); \
localPointB.set##bc_letter(scalesB.get##bc_letter()); \
localPointB.set##bd_letter(tB); \
otherFaceDimA = testOtherFaceDimA; \
otherFaceDimB = testOtherFaceDimB; \
featureA = E; \
featureB = E; \
}
void
EdgeEdgeTests(
bool & done,
float & minDistSqr,
Point3 & localPointA,
Point3 & localPointB,
int & otherFaceDimA,
int & otherFaceDimB,
FeatureType & featureA,
FeatureType & featureB,
const Vector3 & hA,
const Vector3 & hB,
Vector3 faceOffsetAB,
Vector3 faceOffsetBA,
const Matrix3 & matrixAB,
const Matrix3 & matrixBA,
Vector3 signsA,
Vector3 signsB,
Vector3 scalesA,
Vector3 scalesB,
bool first )
{
float distSqr;
float tA, tB;
int testOtherFaceDimA, testOtherFaceDimB;
testOtherFaceDimA = 0;
testOtherFaceDimB = 0;
distSqr = EdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( first ) {
EdgeEdge_SetNewMin( X, Y, X, Y );
} else {
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, X, Y );
}
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = EdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, X, Y );
}
if ( done )
return;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = EdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, X, Y );
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = EdgeEdgeTest_0101( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, X, Y );
}
if ( done )
return;
testOtherFaceDimA = 1;
testOtherFaceDimB = 0;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = EdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, X, Y );
}
if ( done )
return;
signsA.setY( -signsA.getY() );
scalesA.setY( -scalesA.getY() );
distSqr = EdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, X, Y );
}
if ( done )
return;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = EdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, X, Y );
}
if ( done )
return;
signsA.setY( -signsA.getY() );
scalesA.setY( -scalesA.getY() );
distSqr = EdgeEdgeTest_1001( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, X, Y );
}
if ( done )
return;
testOtherFaceDimA = 0;
testOtherFaceDimB = 1;
signsB.setX( -signsB.getX() );
scalesB.setX( -scalesB.getX() );
distSqr = EdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, Y, X );
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = EdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, Y, X );
}
if ( done )
return;
signsB.setY( -signsB.getY() );
scalesB.setY( -scalesB.getY() );
distSqr = EdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, Y, X );
}
if ( done )
return;
signsA.setX( -signsA.getX() );
scalesA.setX( -scalesA.getX() );
distSqr = EdgeEdgeTest_0110( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( X, Y, Y, X );
}
if ( done )
return;
testOtherFaceDimA = 1;
testOtherFaceDimB = 1;
signsB.setY( -signsB.getY() );
scalesB.setY( -scalesB.getY() );
distSqr = EdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, Y, X );
}
if ( done )
return;
signsA.setY( -signsA.getY() );
scalesA.setY( -scalesA.getY() );
distSqr = EdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, Y, X );
}
if ( done )
return;
signsB.setY( -signsB.getY() );
scalesB.setY( -scalesB.getY() );
distSqr = EdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, Y, X );
}
if ( done )
return;
signsA.setY( -signsA.getY() );
scalesA.setY( -scalesA.getY() );
distSqr = EdgeEdgeTest_1010( done, tA, tB, hA, hB, faceOffsetAB, faceOffsetBA,
matrixAB, matrixBA, signsA, signsB, scalesA, scalesB );
if ( distSqr < minDistSqr ) {
EdgeEdge_SetNewMin( Y, X, Y, X );
}
}
float
boxBoxDistance(
Vector3& normal,
BoxPoint& boxPointA,
BoxPoint& boxPointB,
Box boxA, const Transform3& transformA,
Box boxB, const Transform3& transformB,
float distanceThreshold )
{
Matrix3 identity;
identity = Matrix3::identity();
Vector3 ident[3];
ident[0] = identity.getCol0();
ident[1] = identity.getCol1();
ident[2] = identity.getCol2();
// get relative transformations
Transform3 transformAB, transformBA;
Matrix3 matrixAB, matrixBA;
Vector3 offsetAB, offsetBA;
transformAB = orthoInverse(transformA) * transformB;
transformBA = orthoInverse(transformAB);
matrixAB = transformAB.getUpper3x3();
offsetAB = transformAB.getTranslation();
matrixBA = transformBA.getUpper3x3();
offsetBA = transformBA.getTranslation();
Matrix3 absMatrixAB = absPerElem(matrixAB);
Matrix3 absMatrixBA = absPerElem(matrixBA);
// find separating axis with largest gap between projections
BoxSepAxisType axisType;
Vector3 axisA(0.0f), axisB(0.0f);
float gap, maxGap;
int faceDimA = 0, faceDimB = 0, edgeDimA = 0, edgeDimB = 0;
// face axes
Vector3 gapsA = absPerElem(offsetAB) - boxA.half - absMatrixAB * boxB.half;
AaxisTest(0,X,true);
AaxisTest(1,Y,false);
AaxisTest(2,Z,false);
Vector3 gapsB = absPerElem(offsetBA) - boxB.half - absMatrixBA * boxA.half;
BaxisTest(0,X);
BaxisTest(1,Y);
BaxisTest(2,Z);
// cross product axes
// <20>O<EFBFBD>ς<EFBFBD><CF82>O<EFBFBD>̂Ƃ<CC82><C682>̑΍<CC91>
absMatrixAB += Matrix3(1.0e-5f);
absMatrixBA += Matrix3(1.0e-5f);
Matrix3 lsqrs, projOffset, projAhalf, projBhalf;
lsqrs.setCol0( mulPerElem( matrixBA.getCol2(), matrixBA.getCol2() ) +
mulPerElem( matrixBA.getCol1(), matrixBA.getCol1() ) );
lsqrs.setCol1( mulPerElem( matrixBA.getCol2(), matrixBA.getCol2() ) +
mulPerElem( matrixBA.getCol0(), matrixBA.getCol0() ) );
lsqrs.setCol2( mulPerElem( matrixBA.getCol1(), matrixBA.getCol1() ) +
mulPerElem( matrixBA.getCol0(), matrixBA.getCol0() ) );
projOffset.setCol0(matrixBA.getCol1() * offsetAB.getZ() - matrixBA.getCol2() * offsetAB.getY());
projOffset.setCol1(matrixBA.getCol2() * offsetAB.getX() - matrixBA.getCol0() * offsetAB.getZ());
projOffset.setCol2(matrixBA.getCol0() * offsetAB.getY() - matrixBA.getCol1() * offsetAB.getX());
projAhalf.setCol0(absMatrixBA.getCol1() * boxA.half.getZ() + absMatrixBA.getCol2() * boxA.half.getY());
projAhalf.setCol1(absMatrixBA.getCol2() * boxA.half.getX() + absMatrixBA.getCol0() * boxA.half.getZ());
projAhalf.setCol2(absMatrixBA.getCol0() * boxA.half.getY() + absMatrixBA.getCol1() * boxA.half.getX());
projBhalf.setCol0(absMatrixAB.getCol1() * boxB.half.getZ() + absMatrixAB.getCol2() * boxB.half.getY());
projBhalf.setCol1(absMatrixAB.getCol2() * boxB.half.getX() + absMatrixAB.getCol0() * boxB.half.getZ());
projBhalf.setCol2(absMatrixAB.getCol0() * boxB.half.getY() + absMatrixAB.getCol1() * boxB.half.getX());
Matrix3 gapsAxB = absPerElem(projOffset) - projAhalf - transpose(projBhalf);
CrossAxisTest(0,0,X);
CrossAxisTest(0,1,Y);
CrossAxisTest(0,2,Z);
CrossAxisTest(1,0,X);
CrossAxisTest(1,1,Y);
CrossAxisTest(1,2,Z);
CrossAxisTest(2,0,X);
CrossAxisTest(2,1,Y);
CrossAxisTest(2,2,Z);
// need to pick the face on each box whose normal best matches the separating axis.
// will transform vectors to be in the coordinate system of this face to simplify things later.
// for this, a permutation matrix can be used, which the next section computes.
int dimA[3], dimB[3];
if ( axisType == A_AXIS ) {
if ( dot(axisA,offsetAB) < 0.0f )
axisA = -axisA;
axisB = matrixBA * -axisA;
Vector3 absAxisB = Vector3(absPerElem(axisB));
if ( ( absAxisB[0] > absAxisB[1] ) && ( absAxisB[0] > absAxisB[2] ) )
faceDimB = 0;
else if ( absAxisB[1] > absAxisB[2] )
faceDimB = 1;
else
faceDimB = 2;
} else if ( axisType == B_AXIS ) {
if ( dot(axisB,offsetBA) < 0.0f )
axisB = -axisB;
axisA = matrixAB * -axisB;
Vector3 absAxisA = Vector3(absPerElem(axisA));
if ( ( absAxisA[0] > absAxisA[1] ) && ( absAxisA[0] > absAxisA[2] ) )
faceDimA = 0;
else if ( absAxisA[1] > absAxisA[2] )
faceDimA = 1;
else
faceDimA = 2;
}
if ( axisType == CROSS_AXIS ) {
if ( dot(axisA,offsetAB) < 0.0f )
axisA = -axisA;
axisB = matrixBA * -axisA;
Vector3 absAxisA = Vector3(absPerElem(axisA));
Vector3 absAxisB = Vector3(absPerElem(axisB));
dimA[1] = edgeDimA;
dimB[1] = edgeDimB;
if ( edgeDimA == 0 ) {
if ( absAxisA[1] > absAxisA[2] ) {
dimA[0] = 2;
dimA[2] = 1;
} else {
dimA[0] = 1;
dimA[2] = 2;
}
} else if ( edgeDimA == 1 ) {
if ( absAxisA[2] > absAxisA[0] ) {
dimA[0] = 0;
dimA[2] = 2;
} else {
dimA[0] = 2;
dimA[2] = 0;
}
} else {
if ( absAxisA[0] > absAxisA[1] ) {
dimA[0] = 1;
dimA[2] = 0;
} else {
dimA[0] = 0;
dimA[2] = 1;
}
}
if ( edgeDimB == 0 ) {
if ( absAxisB[1] > absAxisB[2] ) {
dimB[0] = 2;
dimB[2] = 1;
} else {
dimB[0] = 1;
dimB[2] = 2;
}
} else if ( edgeDimB == 1 ) {
if ( absAxisB[2] > absAxisB[0] ) {
dimB[0] = 0;
dimB[2] = 2;
} else {
dimB[0] = 2;
dimB[2] = 0;
}
} else {
if ( absAxisB[0] > absAxisB[1] ) {
dimB[0] = 1;
dimB[2] = 0;
} else {
dimB[0] = 0;
dimB[2] = 1;
}
}
} else {
dimA[2] = faceDimA;
dimA[0] = (faceDimA+1)%3;
dimA[1] = (faceDimA+2)%3;
dimB[2] = faceDimB;
dimB[0] = (faceDimB+1)%3;
dimB[1] = (faceDimB+2)%3;
}
Matrix3 aperm_col, bperm_col;
aperm_col.setCol0(ident[dimA[0]]);
aperm_col.setCol1(ident[dimA[1]]);
aperm_col.setCol2(ident[dimA[2]]);
bperm_col.setCol0(ident[dimB[0]]);
bperm_col.setCol1(ident[dimB[1]]);
bperm_col.setCol2(ident[dimB[2]]);
Matrix3 aperm_row, bperm_row;
aperm_row = transpose(aperm_col);
bperm_row = transpose(bperm_col);
// permute all box parameters to be in the face coordinate systems
Matrix3 matrixAB_perm = aperm_row * matrixAB * bperm_col;
Matrix3 matrixBA_perm = transpose(matrixAB_perm);
Vector3 offsetAB_perm, offsetBA_perm;
offsetAB_perm = aperm_row * offsetAB;
offsetBA_perm = bperm_row * offsetBA;
Vector3 halfA_perm, halfB_perm;
halfA_perm = aperm_row * boxA.half;
halfB_perm = bperm_row * boxB.half;
// compute the vector between the centers of each face, in each face's coordinate frame
Vector3 signsA_perm, signsB_perm, scalesA_perm, scalesB_perm, faceOffsetAB_perm, faceOffsetBA_perm;
signsA_perm = copySignPerElem(Vector3(1.0f),aperm_row * axisA);
signsB_perm = copySignPerElem(Vector3(1.0f),bperm_row * axisB);
scalesA_perm = mulPerElem( signsA_perm, halfA_perm );
scalesB_perm = mulPerElem( signsB_perm, halfB_perm );
faceOffsetAB_perm = offsetAB_perm + matrixAB_perm.getCol2() * scalesB_perm.getZ();
faceOffsetAB_perm.setZ( faceOffsetAB_perm.getZ() - scalesA_perm.getZ() );
faceOffsetBA_perm = offsetBA_perm + matrixBA_perm.getCol2() * scalesA_perm.getZ();
faceOffsetBA_perm.setZ( faceOffsetBA_perm.getZ() - scalesB_perm.getZ() );
if ( maxGap < 0.0f ) {
// if boxes overlap, this will separate the faces for finding points of penetration.
faceOffsetAB_perm -= aperm_row * axisA * maxGap * 1.01f;
faceOffsetBA_perm -= bperm_row * axisB * maxGap * 1.01f;
}
// for each vertex/face or edge/edge pair of the two faces, find the closest points.
//
// these points each have an associated box feature (vertex, edge, or face). if each
// point is in the external Voronoi region of the other's feature, they are the
// closest points of the boxes, and the algorithm can exit.
//
// the feature pairs are arranged so that in the general case, the first test will
// succeed. degenerate cases (parallel faces) may require up to all tests in the
// worst case.
//
// if for some reason no case passes the Voronoi test, the features with the minimum
// distance are returned.
Point3 localPointA_perm, localPointB_perm;
float minDistSqr;
bool done;
Vector3 hA_perm( halfA_perm ), hB_perm( halfB_perm );
localPointA_perm.setZ( scalesA_perm.getZ() );
localPointB_perm.setZ( scalesB_perm.getZ() );
scalesA_perm.setZ(0.0f);
scalesB_perm.setZ(0.0f);
int otherFaceDimA, otherFaceDimB;
FeatureType featureA, featureB;
if ( axisType == CROSS_AXIS ) {
EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm,
otherFaceDimA, otherFaceDimB, featureA, featureB,
hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm,
scalesA_perm, scalesB_perm, true );
if ( !done ) {
VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hA_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, false );
if ( !done ) {
VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, false );
}
}
} else if ( axisType == B_AXIS ) {
VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, true );
if ( !done ) {
VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hA_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, false );
if ( !done ) {
EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm,
otherFaceDimA, otherFaceDimB, featureA, featureB,
hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm,
scalesA_perm, scalesB_perm, false );
}
}
} else {
VertexBFaceATests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hA_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsB_perm, scalesB_perm, true );
if ( !done ) {
VertexAFaceBTests( done, minDistSqr, localPointA_perm, localPointB_perm,
featureA, featureB,
hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, scalesA_perm, false );
if ( !done ) {
EdgeEdgeTests( done, minDistSqr, localPointA_perm, localPointB_perm,
otherFaceDimA, otherFaceDimB, featureA, featureB,
hA_perm, hB_perm, faceOffsetAB_perm, faceOffsetBA_perm,
matrixAB_perm, matrixBA_perm, signsA_perm, signsB_perm,
scalesA_perm, scalesB_perm, false );
}
}
}
// convert local points from face-local to box-local coordinate system
boxPointA.localPoint = Point3( aperm_col * Vector3( localPointA_perm ) );
boxPointB.localPoint = Point3( bperm_col * Vector3( localPointB_perm ) );
// find which features of the boxes are involved.
// the only feature pairs which occur in this function are VF, FV, and EE, even though the
// closest points might actually lie on sub-features, as in a VF contact might be used for
// what's actually a VV contact. this means some feature pairs could possibly seem distinct
// from others, although their contact positions are the same. don't know yet whether this
// matters.
int sA[3], sB[3];
sA[0] = boxPointA.localPoint.getX() > 0.0f;
sA[1] = boxPointA.localPoint.getY() > 0.0f;
sA[2] = boxPointA.localPoint.getZ() > 0.0f;
sB[0] = boxPointB.localPoint.getX() > 0.0f;
sB[1] = boxPointB.localPoint.getY() > 0.0f;
sB[2] = boxPointB.localPoint.getZ() > 0.0f;
if ( featureA == F ) {
boxPointA.setFaceFeature( dimA[2], sA[dimA[2]] );
} else if ( featureA == E ) {
boxPointA.setEdgeFeature( dimA[2], sA[dimA[2]], dimA[otherFaceDimA], sA[dimA[otherFaceDimA]] );
} else {
boxPointA.setVertexFeature( sA[0], sA[1], sA[2] );
}
if ( featureB == F ) {
boxPointB.setFaceFeature( dimB[2], sB[dimB[2]] );
} else if ( featureB == E ) {
boxPointB.setEdgeFeature( dimB[2], sB[dimB[2]], dimB[otherFaceDimB], sB[dimB[otherFaceDimB]] );
} else {
boxPointB.setVertexFeature( sB[0], sB[1], sB[2] );
}
normal = transformA * axisA;
if ( maxGap < 0.0f ) {
return (maxGap);
} else {
return (sqrtf( minDistSqr ));
}
}