Files
bullet3/Demos/HeightFieldFluidDemo/BulletHfFluid/btHfFluidRigidCollisionAlgorithm.cpp
erwin.coumans 90f96aec27 Introduced btActionInterface. This makes it easier to extend user-defined actions, such as vehicles and characters.
btRaycastVehicle and btKinematicCharacterController are derived from btActionInterface now.
Some cosmetic cleanup: changed sourceforce/sf.net url to bulletphysics.com.
2009-03-03 16:18:23 +00:00

134 lines
6.0 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Experimental Buoyancy fluid demo written by John McCutchan
*/
#include <stdio.h>
#include "btHfFluidRigidCollisionAlgorithm.h"
#include "btHfFluidBuoyantConvexShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "btHfFluid.h"
btHfFluidRigidCollisionAlgorithm::~btHfFluidRigidCollisionAlgorithm()
{
}
btHfFluidRigidCollisionAlgorithm::btHfFluidRigidCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped)
: btCollisionAlgorithm(ci), m_isSwapped(isSwapped),
m_convexTrianglecallback(ci.m_dispatcher1, col0, col1, !isSwapped) // we flip the isSwapped because we are hf fluid vs. convex and callback expects convex vs. concave
{
m_manifoldPtr = m_convexTrianglecallback.m_manifoldPtr;
if (m_isSwapped)
{
m_hfFluid = static_cast<btHfFluid*>(col1);
m_rigidCollisionObject = static_cast<btCollisionObject*>(col0);
m_manifoldPtr->setBodies(m_hfFluid,m_rigidCollisionObject);
} else {
m_hfFluid = static_cast<btHfFluid*>(col0);
m_rigidCollisionObject = static_cast<btCollisionObject*>(col1);
m_manifoldPtr->setBodies(m_rigidCollisionObject,m_hfFluid);
}
}
void btHfFluidRigidCollisionAlgorithm::processGround (const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btScalar triangleMargin = m_rigidCollisionObject->getCollisionShape()->getMargin();
resultOut->setPersistentManifold(m_manifoldPtr);
// to perform the convex shape vs. ground terrain:
// we pull the convex shape out of the buoyant shape and replace it temporarily
btHfFluidBuoyantConvexShape* tmpShape = (btHfFluidBuoyantConvexShape*)m_rigidCollisionObject->getCollisionShape();
btConvexShape* convexShape = ((btHfFluidBuoyantConvexShape*)tmpShape)->getConvexShape();
m_rigidCollisionObject->setCollisionShape (convexShape);
m_convexTrianglecallback.setTimeStepAndCounters (triangleMargin, dispatchInfo, resultOut);
m_hfFluid->foreachGroundTriangle (&m_convexTrianglecallback, m_convexTrianglecallback.getAabbMin(),m_convexTrianglecallback.getAabbMax());
resultOut->refreshContactPoints();
// restore the buoyant shape
m_rigidCollisionObject->setCollisionShape (tmpShape);
}
btScalar btHfFluidRigidCollisionAlgorithm::processFluid (const btDispatcherInfo& dispatchInfo, btScalar density, btScalar floatyness)
{
btRigidBody* rb = btRigidBody::upcast(m_rigidCollisionObject);
btHfFluidColumnRigidBodyCallback columnCallback (rb, dispatchInfo.m_debugDraw, density, floatyness);
m_hfFluid->foreachFluidColumn (&columnCallback, m_convexTrianglecallback.getAabbMin(), m_convexTrianglecallback.getAabbMax());
return columnCallback.getVolume ();
}
void btHfFluidRigidCollisionAlgorithm::applyFluidFriction (btScalar mu, btScalar submerged_percentage)
{
btRigidBody* rb = btRigidBody::upcast(m_rigidCollisionObject);
btScalar dt = btScalar(1.0f/60.0f);
//#define OLD_WAY
#ifdef OLD_WAY
btScalar radius = btScalar(0.0f);
{
btVector3 aabbMin, aabbMax;
btTransform T;
T.setIdentity();
rb->getCollisionShape()->getAabb (T, aabbMin, aabbMax);
radius = (aabbMax-aabbMin).length()*btScalar(0.5);
}
btScalar viscosity = btScalar(0.05);
btVector3 force = btScalar(6.0f) * SIMD_PI * viscosity * radius * -rb->getLinearVelocity();
btVector3 impulse = force * dt;
rb->applyCentralImpulse (impulse);
if (true)
{
btVector3 av = rb->getAngularVelocity();
av *= btScalar(0.99);
rb->setAngularVelocity (av);
}
#else
btScalar scaled_mu = mu * submerged_percentage * btScalar(0.4f);
rb->applyCentralImpulse (dt * scaled_mu * -rb->getLinearVelocity());
rb->applyTorqueImpulse (dt * scaled_mu * -rb->getAngularVelocity());
#endif
}
void btHfFluidRigidCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
processGround (dispatchInfo, resultOut);
btHfFluidBuoyantConvexShape* buoyantShape = (btHfFluidBuoyantConvexShape*)m_rigidCollisionObject->getCollisionShape();
btRigidBody* rb = btRigidBody::upcast(m_rigidCollisionObject);
if (rb)
{
btScalar mass = btScalar(1.0f) / rb->getInvMass ();
btScalar volume = buoyantShape->getTotalVolume ();
btScalar density = mass / volume;
btScalar floatyness = buoyantShape->getFloatyness ();
btScalar submerged_volume = processFluid (dispatchInfo, density, floatyness);
if (submerged_volume > btScalar(0.0))
{
btScalar submerged_percentage = submerged_volume/buoyantShape->getTotalVolume();
//printf("%f\n", submerged_percentage);
btScalar mu = btScalar(6.0f);
applyFluidFriction (mu, submerged_percentage);
}
}
}
btScalar btHfFluidRigidCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
return btScalar(1.0);
}