and rayTestInternal re-uses precomputed invRayDirection/signs. also did some performance comparison with different ray-AABB test, from http://jgt.akpeters.com/papers/EisemannEtAl07/ In short: it is faster, but it is not clear how to cull ray segments using ray slopes: when rays starts inside the AABB, we get a negative t value, but negatives also get false t-values...
844 lines
19 KiB
C
844 lines
19 KiB
C
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef AABB_UTIL2
|
|
#define AABB_UTIL2
|
|
|
|
#include "btTransform.h"
|
|
#include "btVector3.h"
|
|
#include "btMinMax.h"
|
|
|
|
|
|
#define TEST_RAY_SLOPES 1
|
|
|
|
|
|
SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin,
|
|
btVector3& aabbMax,
|
|
const btVector3& expansionMin,
|
|
const btVector3& expansionMax)
|
|
{
|
|
aabbMin = aabbMin + expansionMin;
|
|
aabbMax = aabbMax + expansionMax;
|
|
}
|
|
|
|
/// conservative test for overlap between two aabbs
|
|
SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
|
|
const btVector3 &point)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap;
|
|
overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap;
|
|
overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
|
|
/// conservative test for overlap between two aabbs
|
|
SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
|
|
const btVector3 &aabbMin2, const btVector3 &aabbMax2)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap;
|
|
overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap;
|
|
overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// conservative test for overlap between triangle and aabb
|
|
SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices,
|
|
const btVector3 &aabbMin, const btVector3 &aabbMax)
|
|
{
|
|
const btVector3 &p1 = vertices[0];
|
|
const btVector3 &p2 = vertices[1];
|
|
const btVector3 &p3 = vertices[2];
|
|
|
|
if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false;
|
|
if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false;
|
|
|
|
if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false;
|
|
if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false;
|
|
|
|
if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false;
|
|
if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE int btOutcode(const btVector3& p,const btVector3& halfExtent)
|
|
{
|
|
return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) |
|
|
(p.getX() > halfExtent.getX() ? 0x08 : 0x0) |
|
|
(p.getY() < -halfExtent.getY() ? 0x02 : 0x0) |
|
|
(p.getY() > halfExtent.getY() ? 0x10 : 0x0) |
|
|
(p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) |
|
|
(p.getZ() > halfExtent.getZ() ? 0x20 : 0x0);
|
|
}
|
|
|
|
/// http://jgt.akpeters.com/papers/EisemannEtAl07/
|
|
/// See test case in btDbvt::rayTestInternal on dynamic AABB tree, Bullet/src/BulletCollision/BroadphaseCollision/btDbvt.h
|
|
|
|
|
|
enum CLASSIFICATION
|
|
{ MMM, MMP, MPM, MPP, PMM, PMP, PPM, PPP, POO, MOO, OPO, OMO, OOP, OOM,
|
|
OMM,OMP,OPM,OPP,MOM,MOP,POM,POP,MMO,MPO,PMO,PPO};
|
|
|
|
struct btRaySlope
|
|
{
|
|
//common variables
|
|
float x, y, z; // ray origin
|
|
float i, j, k; // ray direction
|
|
float ii, ij, ik; // inverses of direction components
|
|
|
|
// ray slope
|
|
int classification;
|
|
float ibyj, jbyi, kbyj, jbyk, ibyk, kbyi; //slope
|
|
float c_xy, c_xz, c_yx, c_yz, c_zx, c_zy;
|
|
};
|
|
|
|
struct btAaboxSlope
|
|
{
|
|
float x0, y0, z0, x1, y1, z1;
|
|
};
|
|
|
|
SIMD_FORCE_INLINE void btMakeRaySlope(float x, float y, float z, float i, float j, float k, btRaySlope *r)
|
|
{
|
|
//common variables
|
|
r->x = x;
|
|
r->y = y;
|
|
r->z = z;
|
|
r->i = i;
|
|
r->j = j;
|
|
r->k = k;
|
|
|
|
r->ii = 1.0f/i;
|
|
r->ij = 1.0f/j;
|
|
r->ik = 1.0f/k;
|
|
|
|
//ray slope
|
|
r->ibyj = r->i * r->ij;
|
|
r->jbyi = r->j * r->ii;
|
|
r->jbyk = r->j * r->ik;
|
|
r->kbyj = r->k * r->ij;
|
|
r->ibyk = r->i * r->ik;
|
|
r->kbyi = r->k * r->ii;
|
|
r->c_xy = r->y - r->jbyi * r->x;
|
|
r->c_xz = r->z - r->kbyi * r->x;
|
|
r->c_yx = r->x - r->ibyj * r->y;
|
|
r->c_yz = r->z - r->kbyj * r->y;
|
|
r->c_zx = r->x - r->ibyk * r->z;
|
|
r->c_zy = r->y - r->jbyk * r->z;
|
|
|
|
//ray slope classification
|
|
if(i < 0)
|
|
{
|
|
if(j < 0)
|
|
{
|
|
if(k < 0)
|
|
{
|
|
r->classification = MMM;
|
|
}
|
|
else if(k > 0){
|
|
r->classification = MMP;
|
|
}
|
|
else//(k >= 0)
|
|
{
|
|
r->classification = MMO;
|
|
}
|
|
}
|
|
else//(j >= 0)
|
|
{
|
|
if(k < 0)
|
|
{
|
|
r->classification = MPM;
|
|
if(j==0)
|
|
r->classification = MOM;
|
|
}
|
|
else//(k >= 0)
|
|
{
|
|
if((j==0) && (k==0))
|
|
r->classification = MOO;
|
|
else if(k==0)
|
|
r->classification = MPO;
|
|
else if(j==0)
|
|
r->classification = MOP;
|
|
else
|
|
r->classification = MPP;
|
|
}
|
|
}
|
|
}
|
|
else//(i >= 0)
|
|
{
|
|
if(j < 0)
|
|
{
|
|
if(k < 0)
|
|
{
|
|
r->classification = PMM;
|
|
if(i==0)
|
|
r->classification = OMM;
|
|
}
|
|
else//(k >= 0)
|
|
{
|
|
if((i==0) && (k==0))
|
|
r->classification = OMO;
|
|
else if(k==0)
|
|
r->classification = PMO;
|
|
else if(i==0)
|
|
r->classification = OMP;
|
|
else
|
|
r->classification = PMP;
|
|
}
|
|
}
|
|
else//(j >= 0)
|
|
{
|
|
if(k < 0)
|
|
{
|
|
if((i==0) && (j==0))
|
|
r->classification = OOM;
|
|
else if(i==0)
|
|
r->classification = OPM;
|
|
else if(j==0)
|
|
r->classification = POM;
|
|
else
|
|
r->classification = PPM;
|
|
}
|
|
else//(k > 0)
|
|
{
|
|
if(i==0)
|
|
{
|
|
if(j==0)
|
|
r->classification = OOP;
|
|
else if(k==0)
|
|
r->classification = OPO;
|
|
else
|
|
r->classification = OPP;
|
|
}
|
|
else
|
|
{
|
|
if((j==0) && (k==0))
|
|
r->classification = POO;
|
|
else if(j==0)
|
|
r->classification = POP;
|
|
else if(k==0)
|
|
r->classification = PPO;
|
|
else
|
|
r->classification = PPP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//SIMD_FORCE_INLINE bool slopeint_div(const btRaySlope* r, const btAaboxSlope* b, float *t)
|
|
SIMD_FORCE_INLINE bool btRaySlopeAabb(const btRaySlope* r, const btAaboxSlope* b, float *t)
|
|
{
|
|
switch (r->classification)
|
|
{
|
|
case MMM:
|
|
{
|
|
if ((r->x < b->x0) || (r->y < b->y0) || (r->z < b->z0)
|
|
|| (r->jbyi * b->x0 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x1 + r->c_yx > 0)
|
|
|| (r->jbyk * b->z0 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z1 + r->c_yz > 0)
|
|
|| (r->kbyi * b->x0 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
case MMP:
|
|
{
|
|
if ((r->x < b->x0) || (r->y < b->y0) || (r->z > b->z1)
|
|
|| (r->jbyi * b->x0 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x1 + r->c_yx > 0)
|
|
|| (r->jbyk * b->z1 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z0 + r->c_yz < 0)
|
|
|| (r->kbyi * b->x0 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
case MPM:
|
|
{
|
|
if ((r->x < b->x0) || (r->y > b->y1) || (r->z < b->z0)
|
|
|| (r->jbyi * b->x0 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x1 + r->c_yx > 0)
|
|
|| (r->jbyk * b->z0 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z1 + r->c_yz > 0)
|
|
|| (r->kbyi * b->x0 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case MPP:
|
|
{
|
|
if ((r->x < b->x0) || (r->y > b->y1) || (r->z > b->z1)
|
|
|| (r->jbyi * b->x0 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x1 + r->c_yx > 0)
|
|
|| (r->jbyk * b->z1 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z0 + r->c_yz < 0)
|
|
|| (r->kbyi * b->x0 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PMM:
|
|
{
|
|
if ((r->x > b->x1) || (r->y < b->y0) || (r->z < b->z0)
|
|
|| (r->jbyi * b->x1 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x0 + r->c_yx < 0)
|
|
|| (r->jbyk * b->z0 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z1 + r->c_yz > 0)
|
|
|| (r->kbyi * b->x1 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PMP:
|
|
{
|
|
if ((r->x > b->x1) || (r->y < b->y0) || (r->z > b->z1)
|
|
|| (r->jbyi * b->x1 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x0 + r->c_yx < 0)
|
|
|| (r->jbyk * b->z1 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z0 + r->c_yz < 0)
|
|
|| (r->kbyi * b->x1 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PPM:
|
|
{
|
|
if ((r->x > b->x1) || (r->y > b->y1) || (r->z < b->z0)
|
|
|| (r->jbyi * b->x1 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x0 + r->c_yx < 0)
|
|
|| (r->jbyk * b->z0 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z1 + r->c_yz > 0)
|
|
|| (r->kbyi * b->x1 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PPP:
|
|
{
|
|
if ((r->x > b->x1) || (r->y > b->y1) || (r->z > b->z1)
|
|
|| (r->jbyi * b->x1 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x0 + r->c_yx < 0)
|
|
|| (r->jbyk * b->z1 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z0 + r->c_yz < 0)
|
|
|| (r->kbyi * b->x1 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case OMM:
|
|
{
|
|
if((r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y < b->y0) || (r->z < b->z0)
|
|
|| (r->jbyk * b->z0 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z1 + r->c_yz > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y1 - r->y) / r->j;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case OMP:
|
|
{
|
|
if((r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y < b->y0) || (r->z > b->z1)
|
|
|| (r->jbyk * b->z1 - b->y1 + r->c_zy > 0)
|
|
|| (r->kbyj * b->y0 - b->z0 + r->c_yz < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y1 - r->y) / r->j;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case OPM:
|
|
{
|
|
if((r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y > b->y1) || (r->z < b->z0)
|
|
|| (r->jbyk * b->z0 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z1 + r->c_yz > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y0 - r->y) / r->j;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case OPP:
|
|
{
|
|
if((r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y > b->y1) || (r->z > b->z1)
|
|
|| (r->jbyk * b->z1 - b->y0 + r->c_zy < 0)
|
|
|| (r->kbyj * b->y1 - b->z0 + r->c_yz < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y0 - r->y) / r->j;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case MOM:
|
|
{
|
|
if((r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->x < b->x0) || (r->z < b->z0)
|
|
|| (r->kbyi * b->x0 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case MOP:
|
|
{
|
|
if((r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->x < b->x0) || (r->z > b->z1)
|
|
|| (r->kbyi * b->x0 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x1 + r->c_zx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case POM:
|
|
{
|
|
if((r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->x > b->x1) || (r->z < b->z0)
|
|
|| (r->kbyi * b->x1 - b->z1 + r->c_xz > 0)
|
|
|| (r->ibyk * b->z0 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t2 = (b->z1 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case POP:
|
|
{
|
|
if((r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->x > b->x1) || (r->z > b->z1)
|
|
|| (r->kbyi * b->x1 - b->z0 + r->c_xz < 0)
|
|
|| (r->ibyk * b->z1 - b->x0 + r->c_zx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t2 = (b->z0 - r->z) / r->k;
|
|
if(t2 > *t)
|
|
*t = t2;
|
|
|
|
return true;
|
|
}
|
|
|
|
case MMO:
|
|
{
|
|
if((r->z < b->z0) || (r->z > b->z1)
|
|
|| (r->x < b->x0) || (r->y < b->y0)
|
|
|| (r->jbyi * b->x0 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x1 + r->c_yx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
|
|
return true;
|
|
}
|
|
|
|
case MPO:
|
|
{
|
|
if((r->z < b->z0) || (r->z > b->z1)
|
|
|| (r->x < b->x0) || (r->y > b->y1)
|
|
|| (r->jbyi * b->x0 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x1 + r->c_yx > 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PMO:
|
|
{
|
|
if((r->z < b->z0) || (r->z > b->z1)
|
|
|| (r->x > b->x1) || (r->y < b->y0)
|
|
|| (r->jbyi * b->x1 - b->y1 + r->c_xy > 0)
|
|
|| (r->ibyj * b->y0 - b->x0 + r->c_yx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y1 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
|
|
return true;
|
|
}
|
|
|
|
case PPO:
|
|
{
|
|
if((r->z < b->z0) || (r->z > b->z1)
|
|
|| (r->x > b->x1) || (r->y > b->y1)
|
|
|| (r->jbyi * b->x1 - b->y0 + r->c_xy < 0)
|
|
|| (r->ibyj * b->y1 - b->x0 + r->c_yx < 0)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
float t1 = (b->y0 - r->y) / r->j;
|
|
if(t1 > *t)
|
|
*t = t1;
|
|
|
|
return true;
|
|
}
|
|
case MOO:
|
|
{
|
|
if((r->x < b->x0)
|
|
|| (r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->z < b->z0) || (r->z > b->z1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x1 - r->x) / r->i;
|
|
return true;
|
|
}
|
|
|
|
case POO:
|
|
{
|
|
if((r->x > b->x1)
|
|
|| (r->y < b->y0) || (r->y > b->y1)
|
|
|| (r->z < b->z0) || (r->z > b->z1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->x0 - r->x) / r->i;
|
|
return true;
|
|
}
|
|
|
|
case OMO:
|
|
{
|
|
if((r->y < b->y0)
|
|
|| (r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->z < b->z0) || (r->z > b->z1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y1 - r->y) / r->j;
|
|
return true;
|
|
}
|
|
|
|
case OPO:
|
|
{
|
|
if((r->y > b->y1)
|
|
|| (r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->z < b->z0) || (r->z > b->z1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->y0 - r->y) / r->j;
|
|
return true;
|
|
}
|
|
|
|
|
|
case OOM:
|
|
{
|
|
if((r->z < b->z0)
|
|
|| (r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y < b->y0) || (r->y > b->y1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->z1 - r->z) / r->k;
|
|
return true;
|
|
}
|
|
|
|
case OOP:
|
|
{
|
|
if((r->z > b->z1)
|
|
|| (r->x < b->x0) || (r->x > b->x1)
|
|
|| (r->y < b->y0) || (r->y > b->y1)
|
|
)
|
|
return false;
|
|
|
|
*t = (b->z0 - r->z) / r->k;
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom,
|
|
const btVector3& rayInvDirection,
|
|
const unsigned int raySign[3],
|
|
const btVector3 bounds[2],
|
|
btScalar& tmin,
|
|
btScalar lambda_min,
|
|
btScalar lambda_max)
|
|
{
|
|
btScalar tmax, tymin, tymax, tzmin, tzmax;
|
|
tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
|
|
tmax = (bounds[1-raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
|
|
tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
|
|
tymax = (bounds[1-raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
|
|
|
|
if ( (tmin > tymax) || (tymin > tmax) )
|
|
return false;
|
|
|
|
if (tymin > tmin)
|
|
tmin = tymin;
|
|
|
|
if (tymax < tmax)
|
|
tmax = tymax;
|
|
|
|
tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
|
|
tzmax = (bounds[1-raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
|
|
|
|
if ( (tmin > tzmax) || (tzmin > tmax) )
|
|
return false;
|
|
if (tzmin > tmin)
|
|
tmin = tzmin;
|
|
if (tzmax < tmax)
|
|
tmax = tzmax;
|
|
return ( (tmin < lambda_max) && (tmax > lambda_min) );
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom,
|
|
const btVector3& rayTo,
|
|
const btVector3& aabbMin,
|
|
const btVector3& aabbMax,
|
|
btScalar& param, btVector3& normal)
|
|
{
|
|
btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5);
|
|
btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5);
|
|
btVector3 source = rayFrom - aabbCenter;
|
|
btVector3 target = rayTo - aabbCenter;
|
|
int sourceOutcode = btOutcode(source,aabbHalfExtent);
|
|
int targetOutcode = btOutcode(target,aabbHalfExtent);
|
|
if ((sourceOutcode & targetOutcode) == 0x0)
|
|
{
|
|
btScalar lambda_enter = btScalar(0.0);
|
|
btScalar lambda_exit = param;
|
|
btVector3 r = target - source;
|
|
int i;
|
|
btScalar normSign = 1;
|
|
btVector3 hitNormal(0,0,0);
|
|
int bit=1;
|
|
|
|
for (int j=0;j<2;j++)
|
|
{
|
|
for (i = 0; i != 3; ++i)
|
|
{
|
|
if (sourceOutcode & bit)
|
|
{
|
|
btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
|
|
if (lambda_enter <= lambda)
|
|
{
|
|
lambda_enter = lambda;
|
|
hitNormal.setValue(0,0,0);
|
|
hitNormal[i] = normSign;
|
|
}
|
|
}
|
|
else if (targetOutcode & bit)
|
|
{
|
|
btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
|
|
btSetMin(lambda_exit, lambda);
|
|
}
|
|
bit<<=1;
|
|
}
|
|
normSign = btScalar(-1.);
|
|
}
|
|
if (lambda_enter <= lambda_exit)
|
|
{
|
|
param = lambda_enter;
|
|
normal = hitNormal;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut)
|
|
{
|
|
btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin);
|
|
btMatrix3x3 abs_b = t.getBasis().absolute();
|
|
btVector3 center = t.getOrigin();
|
|
btVector3 extent = btVector3(abs_b[0].dot(halfExtentsWithMargin),
|
|
abs_b[1].dot(halfExtentsWithMargin),
|
|
abs_b[2].dot(halfExtentsWithMargin));
|
|
aabbMinOut = center - extent;
|
|
aabbMaxOut = center + extent;
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut)
|
|
{
|
|
btAssert(localAabbMin.getX() <= localAabbMax.getX());
|
|
btAssert(localAabbMin.getY() <= localAabbMax.getY());
|
|
btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
|
|
btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin);
|
|
localHalfExtents+=btVector3(margin,margin,margin);
|
|
|
|
btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin);
|
|
btMatrix3x3 abs_b = trans.getBasis().absolute();
|
|
btVector3 center = trans(localCenter);
|
|
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
|
|
abs_b[1].dot(localHalfExtents),
|
|
abs_b[2].dot(localHalfExtents));
|
|
aabbMinOut = center-extent;
|
|
aabbMaxOut = center+extent;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|