Files
bullet3/examples/pybullet/gym/pybullet_envs/agents/train_ppo.py

166 lines
5.4 KiB
Python

# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to train a batch reinforcement learning algorithm.
Command line:
python3 -m agents.scripts.train --logdir=/path/to/logdir --config=pendulum
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
import functools
import os
import gym
import tensorflow as tf
from agents import tools
from . import configs
from agents.scripts import utility
def _create_environment(config):
"""Constructor for an instance of the environment.
Args:
config: Object providing configurations via attributes.
Returns:
Wrapped OpenAI Gym environment.
"""
if isinstance(config.env, str):
env = gym.make(config.env)
else:
env = config.env()
if config.max_length:
env = tools.wrappers.LimitDuration(env, config.max_length)
env = tools.wrappers.RangeNormalize(env)
env = tools.wrappers.ClipAction(env)
env = tools.wrappers.ConvertTo32Bit(env)
return env
def _define_loop(graph, logdir, train_steps, eval_steps):
"""Create and configure a training loop with training and evaluation phases.
Args:
graph: Object providing graph elements via attributes.
logdir: Log directory for storing checkpoints and summaries.
train_steps: Number of training steps per epoch.
eval_steps: Number of evaluation steps per epoch.
Returns:
Loop object.
"""
loop = tools.Loop(
logdir, graph.step, graph.should_log, graph.do_report,
graph.force_reset)
loop.add_phase(
'train', graph.done, graph.score, graph.summary, train_steps,
report_every=None,
log_every=train_steps // 2,
checkpoint_every=None,
feed={graph.is_training: True})
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=eval_steps // 2,
checkpoint_every=10 * eval_steps,
feed={graph.is_training: False})
return loop
def train(config, env_processes):
"""Training and evaluation entry point yielding scores.
Resolves some configuration attributes, creates environments, graph, and
training loop. By default, assigns all operations to the CPU.
Args:
config: Object providing configurations via attributes.
env_processes: Whether to step environments in separate processes.
Yields:
Evaluation scores.
"""
tf.reset_default_graph()
with config.unlocked:
config.network = functools.partial(
utility.define_network, config.network, config)
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
config.value_optimizer = getattr(tf.train, config.value_optimizer)
if config.update_every % config.num_agents:
tf.logging.warn('Number of agents should divide episodes per update.')
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config),
config.num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
loop = _define_loop(
graph, config.logdir,
config.update_every * config.max_length,
config.eval_episodes * config.max_length)
total_steps = int(
config.steps / config.update_every *
(config.update_every + config.eval_episodes))
# Exclude episode related variables since the Python state of environments is
# not checkpointed and thus new episodes start after resuming.
saver = utility.define_saver(exclude=(r'.*_temporary/.*',))
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
utility.initialize_variables(sess, saver, config.logdir)
for score in loop.run(sess, saver, total_steps):
yield score
batch_env.close()
def main(_):
"""Create or load configuration and launch the trainer."""
utility.set_up_logging()
if not FLAGS.config:
raise KeyError('You must specify a configuration.')
logdir = FLAGS.logdir and os.path.expanduser(os.path.join(
FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
try:
config = utility.load_config(logdir)
except IOError:
config = tools.AttrDict(getattr(configs, FLAGS.config)())
config = utility.save_config(config, logdir)
for score in train(config, FLAGS.env_processes):
tf.logging.info('Score {}.'.format(score))
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Base directory to store logs.')
tf.app.flags.DEFINE_string(
'timestamp', datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
'Sub directory to store logs.')
tf.app.flags.DEFINE_string(
'config', None,
'Configuration to execute.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()