330 lines
12 KiB
C++
330 lines
12 KiB
C++
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of EITHER:
|
|
(1) The GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 2.1 of the License, or (at
|
|
your option) any later version. The text of the GNU Lesser
|
|
General Public License is included with this library in the
|
|
file GIMPACT-LICENSE-LGPL.TXT.
|
|
(2) The BSD-style license that is included with this library in
|
|
the file GIMPACT-LICENSE-BSD.TXT.
|
|
(3) The zlib/libpng license that is included with this library in
|
|
the file GIMPACT-LICENSE-ZLIB.TXT.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
|
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "GIMPACT/gim_trimesh.h"
|
|
|
|
|
|
#define FABS(x) (float(fabs(x))) /* implement as is fastest on your machine */
|
|
|
|
/* some macros */
|
|
|
|
#define CLASSIFY_TRIPOINTS_BY_FACE(v1,v2,v3,faceplane,out_of_face)\
|
|
{ \
|
|
_distances[0] = DISTANCE_PLANE_POINT(faceplane,v1);\
|
|
_distances[1] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v2);\
|
|
_distances[2] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v3); \
|
|
if(_distances[1]>0.0f && _distances[2]>0.0f)\
|
|
{\
|
|
out_of_face = 1;\
|
|
}\
|
|
else\
|
|
{\
|
|
out_of_face = 0;\
|
|
}\
|
|
}\
|
|
|
|
#define CLASSIFY_TRIPOINTS_BY_PLANE(v1,v2,v3,faceplane,out_of_face)\
|
|
{ \
|
|
_distances[0] = DISTANCE_PLANE_POINT(faceplane,v1);\
|
|
_distances[1] = DISTANCE_PLANE_POINT(faceplane,v2);\
|
|
_distances[2] = DISTANCE_PLANE_POINT(faceplane,v3); \
|
|
if(_distances[0]<=0.0f || _distances[1]<=0.0f || _distances[2]<=0.0f)\
|
|
{\
|
|
out_of_face = 0;\
|
|
}\
|
|
else\
|
|
{\
|
|
out_of_face = 1;\
|
|
}\
|
|
}\
|
|
|
|
|
|
/* sort so that a<=b */
|
|
#define SORT(a,b) \
|
|
if(a>b) \
|
|
{ \
|
|
float c; \
|
|
c=a; \
|
|
a=b; \
|
|
b=c; \
|
|
}
|
|
|
|
|
|
/* this edge to edge test is based on Franlin Antonio's gem:
|
|
"Faster Line Segment Intersection", in Graphics Gems III,
|
|
pp. 199-202 */
|
|
#define EDGE_EDGE_TEST(V0,U0,U1) \
|
|
Bx=U0[i0]-U1[i0]; \
|
|
By=U0[i1]-U1[i1]; \
|
|
Cx=V0[i0]-U0[i0]; \
|
|
Cy=V0[i1]-U0[i1]; \
|
|
f=Ay*Bx-Ax*By; \
|
|
d=By*Cx-Bx*Cy; \
|
|
if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
|
|
{ \
|
|
e=Ax*Cy-Ay*Cx; \
|
|
if(f>0) \
|
|
{ \
|
|
if(e>=0 && e<=f) return 1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
if(e<=0 && e>=f) return 1; \
|
|
} \
|
|
}
|
|
|
|
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
|
|
{ \
|
|
float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
|
|
Ax=V1[i0]-V0[i0]; \
|
|
Ay=V1[i1]-V0[i1]; \
|
|
/* test edge U0,U1 against V0,V1 */ \
|
|
EDGE_EDGE_TEST(V0,U0,U1); \
|
|
/* test edge U1,U2 against V0,V1 */ \
|
|
EDGE_EDGE_TEST(V0,U1,U2); \
|
|
/* test edge U2,U1 against V0,V1 */ \
|
|
EDGE_EDGE_TEST(V0,U2,U0); \
|
|
}
|
|
|
|
#define POINT_IN_TRI(V0,U0,U1,U2) \
|
|
{ \
|
|
float a,b,c,d0,d1,d2; \
|
|
/* is T1 completly inside T2? */ \
|
|
/* check if V0 is inside tri(U0,U1,U2) */ \
|
|
a=U1[i1]-U0[i1]; \
|
|
b=-(U1[i0]-U0[i0]); \
|
|
c=-a*U0[i0]-b*U0[i1]; \
|
|
d0=a*V0[i0]+b*V0[i1]+c; \
|
|
\
|
|
a=U2[i1]-U1[i1]; \
|
|
b=-(U2[i0]-U1[i0]); \
|
|
c=-a*U1[i0]-b*U1[i1]; \
|
|
d1=a*V0[i0]+b*V0[i1]+c; \
|
|
\
|
|
a=U0[i1]-U2[i1]; \
|
|
b=-(U0[i0]-U2[i0]); \
|
|
c=-a*U2[i0]-b*U2[i1]; \
|
|
d2=a*V0[i0]+b*V0[i1]+c; \
|
|
if(d0*d1>0.0) \
|
|
{ \
|
|
if(d0*d2>0.0) return 1; \
|
|
} \
|
|
}
|
|
|
|
int coplanar_tri_tri(GIM_TRIANGLE_DATA *tri1,
|
|
GIM_TRIANGLE_DATA *tri2)
|
|
{
|
|
short i0,i1;
|
|
/* first project onto an axis-aligned plane, that maximizes the area */
|
|
/* of the triangles, compute indices: i0,i1. */
|
|
PLANE_MINOR_AXES(tri1->m_planes.m_planes[0], i0, i1);
|
|
|
|
/* test all edges of triangle 1 against the edges of triangle 2 */
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[0],tri1->m_vertices[1],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[2],tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
|
|
/* finally, test if tri1 is totally contained in tri2 or vice versa */
|
|
/*POINT_IN_HULL(tri1->m_vertices[0],(&tri2->m_planes.m_planes[1]),3,i0);
|
|
if(i0==0) return 1;
|
|
|
|
POINT_IN_HULL(tri2->m_vertices[0],(&tri1->m_planes.m_planes[1]),3,i0);
|
|
if(i0==0) return 1;*/
|
|
|
|
POINT_IN_TRI(tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2])
|
|
POINT_IN_TRI(tri2->m_vertices[0],tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2])
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
|
|
{ \
|
|
if(D0D1>0.0f) \
|
|
{ \
|
|
/* here we know that D0D2<=0.0 */ \
|
|
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
|
|
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
|
|
} \
|
|
else if(D0D2>0.0f)\
|
|
{ \
|
|
/* here we know that d0d1<=0.0 */ \
|
|
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
|
|
} \
|
|
else if(D1*D2>0.0f || D0!=0.0f) \
|
|
{ \
|
|
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
|
|
A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
|
|
} \
|
|
else if(D1!=0.0f) \
|
|
{ \
|
|
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
|
|
} \
|
|
else if(D2!=0.0f) \
|
|
{ \
|
|
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* triangles are coplanar */ \
|
|
return coplanar_tri_tri(tri1,tri2); \
|
|
} \
|
|
}\
|
|
|
|
|
|
int gim_triangle_triangle_overlap_fast(
|
|
GIM_TRIANGLE_DATA *tri1,
|
|
GIM_TRIANGLE_DATA *tri2)
|
|
{
|
|
vec3f _distances;
|
|
char out_of_face;
|
|
CLASSIFY_TRIPOINTS_BY_FACE(tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_planes.m_planes[0],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
CLASSIFY_TRIPOINTS_BY_PLANE(tri2->m_vertices[0],tri2->m_vertices[1],
|
|
tri2->m_vertices[2],tri1->m_planes.m_planes[0],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
|
|
/*vec3f _points[3];
|
|
VEC_COPY(_points[0],tri2->m_vertices[0]);
|
|
VEC_COPY(_points[1],tri2->m_vertices[1]);
|
|
VEC_COPY(_points[2],tri2->m_vertices[2]);
|
|
|
|
CLASSIFY_TRIPOINTS_BY_FACE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[0],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[1],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[2],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[3],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
return 1;*/
|
|
|
|
|
|
short i0,i1;
|
|
/* first project onto an axis-aligned plane, that maximizes the area */
|
|
/* of the triangles, compute indices: i0,i1. */
|
|
PLANE_MINOR_AXES(tri2->m_planes.m_planes[0], i0, i1);
|
|
/* test all edges of triangle 1 against the edges of triangle 2 */
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[0],tri1->m_vertices[1],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[2],tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
|
|
|
/* finally, test if tri1 is totally contained in tri2 or vice versa */
|
|
/*POINT_IN_HULL(tri1->m_vertices[0],(&tri2->m_planes.m_planes[1]),3,i0);
|
|
if(i0==0) return 1;
|
|
|
|
POINT_IN_HULL(tri2->m_vertices[0],(&tri1->m_planes.m_planes[1]),3,i0);
|
|
if(i0==0) return 1;*/
|
|
|
|
POINT_IN_TRI(tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2])
|
|
POINT_IN_TRI(tri2->m_vertices[0],tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2])
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int gim_triangle_triangle_overlap(
|
|
GIM_TRIANGLE_DATA *tri1,
|
|
GIM_TRIANGLE_DATA *tri2)
|
|
{
|
|
vec3f _distances;
|
|
char out_of_face;
|
|
CLASSIFY_TRIPOINTS_BY_FACE(tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_planes.m_planes[0],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
CLASSIFY_TRIPOINTS_BY_FACE(tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2],tri1->m_planes.m_planes[0],out_of_face);
|
|
if(out_of_face==1) return 0;
|
|
|
|
|
|
float du0=0,du1=0,du2=0,dv0=0,dv1=0,dv2=0;
|
|
float D[3];
|
|
float isect1[2], isect2[2];
|
|
float du0du1=0,du0du2=0,dv0dv1=0,dv0dv2=0;
|
|
short index;
|
|
float vp0,vp1,vp2;
|
|
float up0,up1,up2;
|
|
float bb,cc,max;
|
|
|
|
/* compute direction of intersection line */
|
|
VEC_CROSS(D,tri1->m_planes.m_planes[0],tri2->m_planes.m_planes[0]);
|
|
|
|
/* compute and index to the largest component of D */
|
|
max=(float)FABS(D[0]);
|
|
index=0;
|
|
bb=(float)FABS(D[1]);
|
|
cc=(float)FABS(D[2]);
|
|
if(bb>max) max=bb,index=1;
|
|
if(cc>max) max=cc,index=2;
|
|
|
|
/* this is the simplified projection onto L*/
|
|
vp0= tri1->m_vertices[0][index];
|
|
vp1= tri1->m_vertices[1][index];
|
|
vp2= tri1->m_vertices[2][index];
|
|
|
|
up0= tri2->m_vertices[0][index];
|
|
up1= tri2->m_vertices[1][index];
|
|
up2= tri2->m_vertices[2][index];
|
|
|
|
/* compute interval for triangle 1 */
|
|
float a,b,c,x0,x1;
|
|
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
|
|
|
|
/* compute interval for triangle 2 */
|
|
float d,e,f,y0,y1;
|
|
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
|
|
|
|
float xx,yy,xxyy,tmp;
|
|
xx=x0*x1;
|
|
yy=y0*y1;
|
|
xxyy=xx*yy;
|
|
|
|
tmp=a*xxyy;
|
|
isect1[0]=tmp+b*x1*yy;
|
|
isect1[1]=tmp+c*x0*yy;
|
|
|
|
tmp=d*xxyy;
|
|
isect2[0]=tmp+e*xx*y1;
|
|
isect2[1]=tmp+f*xx*y0;
|
|
|
|
SORT(isect1[0],isect1[1]);
|
|
SORT(isect2[0],isect2[1]);
|
|
|
|
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
|
|
return 1;
|
|
}
|