Files
bullet3/Extras/RigidBodyGpuPipeline/opencl/3dGridBroadphase/Shared/bt3dGridBroadphaseOCL.cl

349 lines
8.9 KiB
Common Lisp

MSTRINGIFY(
int getPosHash(int4 gridPos, __global float4* pParams)
{
int4 gridDim = *((__global int4*)(pParams + 1));
gridPos.x &= gridDim.x - 1;
gridPos.y &= gridDim.y - 1;
gridPos.z &= gridDim.z - 1;
int hash = gridPos.z * gridDim.y * gridDim.x + gridPos.y * gridDim.x + gridPos.x;
return hash;
}
int4 getGridPos(float4 worldPos, __global float4* pParams)
{
int4 gridPos;
int4 gridDim = *((__global int4*)(pParams + 1));
gridPos.x = (int)floor(worldPos.x * pParams[0].x) & (gridDim.x - 1);
gridPos.y = (int)floor(worldPos.y * pParams[0].y) & (gridDim.y - 1);
gridPos.z = (int)floor(worldPos.z * pParams[0].z) & (gridDim.z - 1);
return gridPos;
}
// calculate grid hash value for each body using its AABB
__kernel void kCalcHashAABB(int numObjects, __global float4* pAABB, __global int2* pHash, __global float4* pParams GUID_ARG)
{
int index = get_global_id(0);
if(index >= numObjects)
{
return;
}
float4 bbMin = pAABB[index*2];
float4 bbMax = pAABB[index*2 + 1];
float4 pos;
pos.x = (bbMin.x + bbMax.x) * 0.5f;
pos.y = (bbMin.y + bbMax.y) * 0.5f;
pos.z = (bbMin.z + bbMax.z) * 0.5f;
pos.w = 0.f;
// get address in grid
int4 gridPos = getGridPos(pos, pParams);
int gridHash = getPosHash(gridPos, pParams);
// store grid hash and body index
int2 hashVal;
hashVal.x = gridHash;
hashVal.y = index;
pHash[index] = hashVal;
}
__kernel void kClearCellStart( int numCells,
__global int* pCellStart GUID_ARG)
{
int index = get_global_id(0);
if(index >= numCells)
{
return;
}
pCellStart[index] = -1;
}
__kernel void kFindCellStart(int numObjects, __global int2* pHash, __global int* cellStart GUID_ARG)
{
__local int sharedHash[513];
int index = get_global_id(0);
int2 sortedData;
if(index < numObjects)
{
sortedData = pHash[index];
// Load hash data into shared memory so that we can look
// at neighboring body's hash value without loading
// two hash values per thread
sharedHash[get_local_id(0) + 1] = sortedData.x;
if((index > 0) && (get_local_id(0) == 0))
{
// first thread in block must load neighbor body hash
sharedHash[0] = pHash[index-1].x;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if(index < numObjects)
{
if((index == 0) || (sortedData.x != sharedHash[get_local_id(0)]))
{
cellStart[sortedData.x] = index;
}
}
}
int testAABBOverlap(float4 min0, float4 max0, float4 min1, float4 max1)
{
return (min0.x <= max1.x)&& (min1.x <= max0.x) &&
(min0.y <= max1.y)&& (min1.y <= max0.y) &&
(min0.z <= max1.z)&& (min1.z <= max0.z);
}
void findPairsInCell( int numObjects,
int4 gridPos,
int index,
__global int2* pHash,
__global int* pCellStart,
__global float4* pAABB,
__global int* pPairBuff,
__global int2* pPairBuffStartCurr,
__global float4* pParams)
{
int4 pGridDim = *((__global int4*)(pParams + 1));
int maxBodiesPerCell = pGridDim.w;
int gridHash = getPosHash(gridPos, pParams);
// get start of bucket for this cell
int bucketStart = pCellStart[gridHash];
if (bucketStart == -1)
{
return; // cell empty
}
// iterate over bodies in this cell
int2 sortedData = pHash[index];
int unsorted_indx = sortedData.y;
float4 min0 = pAABB[unsorted_indx*2 + 0];
float4 max0 = pAABB[unsorted_indx*2 + 1];
int handleIndex = as_int(min0.w);
int2 start_curr = pPairBuffStartCurr[handleIndex];
int start = start_curr.x;
int curr = start_curr.y;
int2 start_curr_next = pPairBuffStartCurr[handleIndex+1];
int curr_max = start_curr_next.x - start - 1;
int bucketEnd = bucketStart + maxBodiesPerCell;
bucketEnd = (bucketEnd > numObjects) ? numObjects : bucketEnd;
for(int index2 = bucketStart; index2 < bucketEnd; index2++)
{
int2 cellData = pHash[index2];
if (cellData.x != gridHash)
{
break; // no longer in same bucket
}
int unsorted_indx2 = cellData.y;
if (unsorted_indx2 < unsorted_indx) // check not colliding with self
{
float4 min1 = pAABB[unsorted_indx2*2 + 0];
float4 max1 = pAABB[unsorted_indx2*2 + 1];
if(testAABBOverlap(min0, max0, min1, max1))
{
int handleIndex2 = as_int(min1.w);
int k;
for(k = 0; k < curr; k++)
{
int old_pair = pPairBuff[start+k] & (~0x60000000);
if(old_pair == handleIndex2)
{
pPairBuff[start+k] |= 0x40000000;
break;
}
}
if(k == curr)
{
if(curr >= curr_max)
{ // not a good solution, but let's avoid crash
break;
}
pPairBuff[start+curr] = handleIndex2 | 0x20000000;
curr++;
}
}
}
}
int2 newStartCurr;
newStartCurr.x = start;
newStartCurr.y = curr;
pPairBuffStartCurr[handleIndex] = newStartCurr;
return;
}
__kernel void kFindOverlappingPairs( int numObjects,
__global float4* pAABB,
__global int2* pHash,
__global int* pCellStart,
__global int* pPairBuff,
__global int2* pPairBuffStartCurr,
__global float4* pParams GUID_ARG)
{
int index = get_global_id(0);
if(index >= numObjects)
{
return;
}
int2 sortedData = pHash[index];
int unsorted_indx = sortedData.y;
float4 bbMin = pAABB[unsorted_indx*2 + 0];
float4 bbMax = pAABB[unsorted_indx*2 + 1];
float4 pos;
pos.x = (bbMin.x + bbMax.x) * 0.5f;
pos.y = (bbMin.y + bbMax.y) * 0.5f;
pos.z = (bbMin.z + bbMax.z) * 0.5f;
// get address in grid
int4 gridPosA = getGridPos(pos, pParams);
int4 gridPosB;
// examine only neighbouring cells
for(int z=-1; z<=1; z++)
{
gridPosB.z = gridPosA.z + z;
for(int y=-1; y<=1; y++)
{
gridPosB.y = gridPosA.y + y;
for(int x=-1; x<=1; x++)
{
gridPosB.x = gridPosA.x + x;
findPairsInCell(numObjects, gridPosB, index, pHash, pCellStart, pAABB, pPairBuff, pPairBuffStartCurr, pParams);
}
}
}
}
__kernel void kFindPairsLarge( int numObjects,
__global float4* pAABB,
__global int2* pHash,
__global int* pCellStart,
__global int* pPairBuff,
__global int2* pPairBuffStartCurr,
uint numLarge GUID_ARG)
{
int index = get_global_id(0);
if(index >= numObjects)
{
return;
}
int2 sortedData = pHash[index];
int unsorted_indx = sortedData.y;
float4 min0 = pAABB[unsorted_indx*2 + 0];
float4 max0 = pAABB[unsorted_indx*2 + 1];
int handleIndex = as_int(min0.w);
int2 start_curr = pPairBuffStartCurr[handleIndex];
int start = start_curr.x;
int curr = start_curr.y;
int2 start_curr_next = pPairBuffStartCurr[handleIndex+1];
int curr_max = start_curr_next.x - start - 1;
for(uint i = 0; i < numLarge; i++)
{
int indx2 = numObjects + i;
float4 min1 = pAABB[indx2*2 + 0];
float4 max1 = pAABB[indx2*2 + 1];
if(testAABBOverlap(min0, max0, min1, max1))
{
int k;
int handleIndex2 = as_int(min1.w);
for(k = 0; k < curr; k++)
{
int old_pair = pPairBuff[start+k] & (~0x60000000);
if(old_pair == handleIndex2)
{
pPairBuff[start+k] |= 0x40000000;
break;
}
}
if(k == curr)
{
pPairBuff[start+curr] = handleIndex2 | 0x20000000;
if(curr >= curr_max)
{ // not a good solution, but let's avoid crash
break;
}
curr++;
}
}
}
int2 newStartCurr;
newStartCurr.x = start;
newStartCurr.y = curr;
pPairBuffStartCurr[handleIndex] = newStartCurr;
return;
}
__kernel void kComputePairCacheChanges( int numObjects,
__global int* pPairBuff,
__global int2* pPairBuffStartCurr,
__global int* pPairScan,
__global float4* pAABB GUID_ARG)
{
int index = get_global_id(0);
if(index >= numObjects)
{
return;
}
float4 bbMin = pAABB[index * 2];
int handleIndex = as_int(bbMin.w);
int2 start_curr = pPairBuffStartCurr[handleIndex];
int start = start_curr.x;
int curr = start_curr.y;
__global int *pInp = pPairBuff + start;
int num_changes = 0;
for(int k = 0; k < curr; k++, pInp++)
{
if(!((*pInp) & 0x40000000))
{
num_changes++;
}
}
pPairScan[index+1] = num_changes;
}
__kernel void kSqueezeOverlappingPairBuff( int numObjects,
__global int* pPairBuff,
__global int2* pPairBuffStartCurr,
__global int* pPairScan,
__global int* pPairOut,
__global float4* pAABB GUID_ARG)
{
int index = get_global_id(0);
if(index >= numObjects)
{
return;
}
float4 bbMin = pAABB[index * 2];
int handleIndex = as_int(bbMin.w);
int2 start_curr = pPairBuffStartCurr[handleIndex];
int start = start_curr.x;
int curr = start_curr.y;
__global int* pInp = pPairBuff + start;
__global int* pOut = pPairOut + pPairScan[index+1];
__global int* pOut2 = pInp;
int num = 0;
for(int k = 0; k < curr; k++, pInp++)
{
if(!((*pInp) & 0x40000000))
{
*pOut = *pInp;
pOut++;
}
if((*pInp) & 0x60000000)
{
*pOut2 = (*pInp) & (~0x60000000);
pOut2++;
num++;
}
}
int2 newStartCurr;
newStartCurr.x = start;
newStartCurr.y = num;
pPairBuffStartCurr[handleIndex] = newStartCurr;
}
);