Files
bullet3/examples/pybullet/gym/pybullet_envs/bullet/minitaur_new.py
Erwin Coumans 21f9d1b816 refactor pybullet/gym to allow instantiating environments directly from a pybullet install:
work-in-progress (need to add missing data files, fix paths etc)

example:

pip install pybullet
pip install gym

python
import gym
import pybullet
import pybullet_envs
env = gym.make("HumanoidBulletEnv-v0")
2017-08-22 00:42:02 -07:00

177 lines
10 KiB
Python

import pybullet as p
import numpy as np
import copy
import math
class Minitaur:
def __init__(self, urdfRootPath='', timeStep=0.01, isEnableSelfCollision=True, motorVelocityLimit=10.0):
self.urdfRootPath = urdfRootPath
self.isEnableSelfCollision = isEnableSelfCollision
self.motorVelocityLimit = motorVelocityLimit
self.timeStep = timeStep
self.reset()
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(self.quadruped, i)
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
self.resetPose()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
if self.isEnableSelfCollision:
self.quadruped = p.loadURDF("%s/quadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2], flags=p.URDF_USE_SELF_COLLISION)
else:
self.quadruped = p.loadURDF("%s/quadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2])
self.kp = 1
self.kd = 1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [-1, -1, -1, -1, 1, 1, 1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
kneeFrictionForce = 0
halfpi = 1.57079632679
kneeangle = -2.1834 #halfpi - acos(upper_leg_length / lower_leg_length)
#left front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],self.motorDir[0]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],self.motorDir[0]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],self.motorDir[1]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.motorDir[1]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_leftL_joint', self.motorDir[0]*halfpi)
self.setMotorAngleByName('motor_front_leftR_joint', self.motorDir[1]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#left back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],self.motorDir[2]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],self.motorDir[2]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],self.motorDir[3]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.motorDir[3]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_leftL_joint',self.motorDir[2]*halfpi)
self.setMotorAngleByName('motor_back_leftR_joint',self.motorDir[3]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],self.motorDir[4]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],self.motorDir[4]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],self.motorDir[5]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.motorDir[5]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_rightL_joint',self.motorDir[4]*halfpi)
self.setMotorAngleByName('motor_front_rightR_joint',self.motorDir[5]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],self.motorDir[6]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],self.motorDir[6]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],self.motorDir[7]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.motorDir[7]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_rightL_joint',self.motorDir[6]*halfpi)
self.setMotorAngleByName('motor_back_rightR_joint',self.motorDir[7]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
def getBasePosition(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return position
def getBaseOrientation(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return orientation
def getActionDimension(self):
return self.nMotors
def getObservationDimension(self):
return len(self.getObservation())
def getObservation(self):
observation = []
observation.extend(self.getMotorAngles().tolist())
observation.extend(self.getMotorVelocities().tolist())
observation.extend(self.getMotorTorques().tolist())
observation.extend(list(self.getBaseOrientation()))
return observation
def applyAction(self, motorCommands):
if self.motorVelocityLimit < np.inf:
currentMotorAngle = self.getMotorAngles()
motorCommandsMax = currentMotorAngle + self.timeStep * self.motorVelocityLimit
motorCommandsMin = currentMotorAngle - self.timeStep * self.motorVelocityLimit
motorCommands = np.clip(motorCommands, motorCommandsMin, motorCommandsMax)
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
# print('action: {}'.format(motorCommands))
# print('motor: {}'.format(motorCommandsWithDir))
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques
def convertFromLegModel(self, actions):
motorAngle = copy.deepcopy(actions)
scaleForSingularity = 1
offsetForSingularity = 0.5
motorAngle[0] = math.pi + math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
motorAngle[1] = math.pi - math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
motorAngle[2] = math.pi + math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
motorAngle[3] = math.pi - math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
motorAngle[4] = math.pi - math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
motorAngle[5] = math.pi + math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
motorAngle[6] = math.pi - math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
motorAngle[7] = math.pi + math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
return motorAngle