Files
bullet3/Demos/CcdPhysicsDemo/CcdPhysicsDemo.cpp
ejcoumans b054f375bc - Added serialization to btBvhTriangleMeshShape/btOptimizedBvh. See ConcaveDemo for example usage.
- added bt32BitAxisSweep3, which co-exists without recompilation, using template class. This broadphase is recommended for large worlds with many objects (> 16384), until btMultiSwap is finished.
- Fixed some recent issues in Bullet 2.57 related to compound (thanks Proctoid) and memory allocations
2007-09-10 01:14:42 +00:00

613 lines
18 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//enable just one, DO_BENCHMARK_PYRAMIDS or DO_WALL
#define DO_BENCHMARK_PYRAMIDS 1
//#define DO_WALL 1
//Note: some of those settings need 'DO_WALL' demo
//#define USE_KINEMATIC_GROUND 1
//#define PRINT_CONTACT_STATISTICS 1
//#define REGISTER_CUSTOM_COLLISION_ALGORITHM 1
//#define REGISTER_BOX_BOX 1 //needs to be used in combination with REGISTER_CUSTOM_COLLISION_ALGORITHM
//#define USER_DEFINED_FRICTION_MODEL 1
//#define USE_CUSTOM_NEAR_CALLBACK 1
//#define CENTER_OF_MASS_SHIFT 1
//#define USE_PARALLEL_SOLVER 1 //experimental parallel solver
//#define USE_PARALLEL_DISPATCHER 1
//following define allows to compare/replace Bullet's constraint solver with ODE quickstep
//this define requires to either add the libquickstep library (win32, see msvc/8/libquickstep.vcproj) or manually add the files from Extras/quickstep
//#define COMPARE_WITH_QUICKSTEP 1
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h"
#ifdef REGISTER_BOX_BOX
#include "../Extras/AlternativeCollisionAlgorithms/BoxBoxCollisionAlgorithm.h"
#endif //REGISTER_BOX_BOX
#include "BulletCollision/CollisionDispatch/btSphereTriangleCollisionAlgorithm.h"
#ifdef USE_PARALLEL_DISPATCHER
#include "../../Extras/BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#include "../../Extras/BulletMultiThreaded/Win32ThreadSupport.h"
#include "../../Extras/BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
#include "../../Extras/BulletMultiThreaded/SpuParallelSolver.h"
#include "../../Extras/BulletMultiThreaded/SpuSolverTask/SpuParallellSolverTask.h"
#endif//USE_PARALLEL_DISPATCHER
#ifdef COMPARE_WITH_QUICKSTEP
#include "../Extras/quickstep/OdeConstraintSolver.h"
#endif //COMPARE_WITH_QUICKSTEP
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#include "GLDebugDrawer.h"
#include "BMF_Api.h"
#include <stdio.h> //printf debugging
float deltaTime = 1.f/60.f;
float gCollisionMargin = 0.05f;
#include "CcdPhysicsDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
btTransform comOffset;
btVector3 comOffsetVec(0,2,0);
extern float eye[3];
extern int glutScreenWidth;
extern int glutScreenHeight;
const int maxProxies = 32766;
const int maxOverlap = 65535;
bool createConstraint = true;//false;
#ifdef CENTER_OF_MASS_SHIFT
bool useCompound = true;
#else
bool useCompound = false;
#endif
#ifdef _DEBUG
const int gNumObjects = 120;
#else
const int gNumObjects = 120;//try this in release mode: 3000. never go above 16384, unless you increate maxNumObjects value in DemoApplication.cp
#endif
const int maxNumObjects = 32760;
int shapeIndex[maxNumObjects];
#define CUBE_HALF_EXTENTS 0.5
#define EXTRA_HEIGHT -10.f
//GL_LineSegmentShape shapeE(btPoint3(-50,0,0),
// btPoint3(50,0,0));
static const int numShapes = 4;
btCollisionShape* shapePtr[numShapes] =
{
///Please don't make the box sizes larger then 1000: the collision detection will be inaccurate.
///See http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=346
//#define USE_GROUND_PLANE 1
#ifdef USE_GROUND_PLANE
new btStaticPlaneShape(btVector3(0,1,0),0.5),
#else
new btBoxShape (btVector3(200,CUBE_HALF_EXTENTS,200)),
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)),
#else
new btCylinderShape (btVector3(CUBE_HALF_EXTENTS-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin)),
#endif
//new btSphereShape (CUBE_HALF_EXTENTS),
//new btCapsuleShape(0.5*CUBE_HALF_EXTENTS-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin),
//new btCylinderShape (btVector3(1-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin,1-gCollisionMargin)),
//new btConeShape(CUBE_HALF_EXTENTS-gCollisionMargin,2.f*CUBE_HALF_EXTENTS-gCollisionMargin),
new btSphereShape (CUBE_HALF_EXTENTS),
//new btBU_Simplex1to4(btPoint3(-1,-1,-1),btPoint3(1,-1,-1),btPoint3(-1,1,-1),btPoint3(0,0,1)),
//new btEmptyShape(),
new btBoxShape (btVector3(0.4,1,0.8))
};
void CcdPhysicsDemo::createStack( btCollisionShape* boxShape, float halfCubeSize, int size, float zPos )
{
btTransform trans;
trans.setIdentity();
for(int i=0; i<size; i++)
{
// This constructs a row, from left to right
int rowSize = size - i;
for(int j=0; j< rowSize; j++)
{
btVector4 pos;
pos.setValue(
-rowSize * halfCubeSize + halfCubeSize + j * 2.0f * halfCubeSize,
halfCubeSize + i * halfCubeSize * 2.0f,
zPos);
trans.setOrigin(pos);
btScalar mass = 1.f;
btRigidBody* body = localCreateRigidBody(mass,trans,boxShape);
}
}
}
////////////////////////////////////
//by default, Bullet will use its own nearcallback, but you can override it using dispatcher->setNearCallback()
void customNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
if (dispatcher.needsCollision(colObj0,colObj1))
{
//dispatcher will keep algorithms persistent in the collision pair
if (!collisionPair.m_algorithm)
{
collisionPair.m_algorithm = dispatcher.findAlgorithm(colObj0,colObj1);
}
if (collisionPair.m_algorithm)
{
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
float toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
GLDebugDrawer debugDrawer;
//experimental jitter damping (1 = no damping, 0 = total damping once motion below threshold)
extern btScalar gJitterVelocityDampingFactor;
int main(int argc,char** argv)
{
gJitterVelocityDampingFactor = 0.7;
CcdPhysicsDemo* ccdDemo = new CcdPhysicsDemo();
ccdDemo->initPhysics();
#ifdef DO_BENCHMARK_PYRAMIDS
ccdDemo->setCameraDistance(26.f);
#endif
return glutmain(argc, argv,640,480,"Bullet Physics Demo. http://bullet.sf.net",ccdDemo);
}
extern int gNumManifold;
extern int gOverlappingPairs;
extern int gTotalContactPoints;
void CcdPhysicsDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#ifdef USE_KINEMATIC_GROUND
//btQuaternion kinRotation(btVector3(0,0,1),0.);
btVector3 kinTranslation(-0.01,0,0);
//kinematic object
btCollisionObject* colObj = m_dynamicsWorld->getCollisionObjectArray()[0];
//is this a rigidbody with a motionstate? then use the motionstate to update positions!
if (btRigidBody::upcast(colObj) && btRigidBody::upcast(colObj)->getMotionState())
{
btTransform newTrans;
btRigidBody::upcast(colObj)->getMotionState()->getWorldTransform(newTrans);
newTrans.getOrigin()+=kinTranslation;
btRigidBody::upcast(colObj)->getMotionState()->setWorldTransform(newTrans);
} else
{
m_dynamicsWorld->getCollisionObjectArray()[0]->getWorldTransform().getOrigin() += kinTranslation;
}
#endif //USE_KINEMATIC_GROUND
float dt = m_clock.getTimeMicroseconds() * 0.000001f;
m_clock.reset();
// printf("dt = %f: ",dt);
if (m_dynamicsWorld)
{
//swap solver
#ifdef COMPARE_WITH_QUICKSTEP
m_dynamicsWorld->setConstraintSolver( new OdeConstraintSolver());
#endif //COMPARE_WITH_QUICKSTEP
//#define FIXED_STEP 1
#ifdef FIXED_STEP
m_dynamicsWorld->stepSimulation(1.0f/60.f,0);
#else
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 1;
if (m_idle)
dt = 1.0/420.f;
int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
/*
if (!numSimSteps)
printf("Interpolated transforms\n");
else
{
if (numSimSteps > maxSimSubSteps)
{
//detect dropping frames
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
} else
{
printf("Simulated (%i) steps\n",numSimSteps);
}
}
*/
#endif
}
#ifdef USE_QUICKPROF
btProfiler::beginBlock("render");
#endif //USE_QUICKPROF
renderme();
//render the graphics objects, with center of mass shift
updateCamera();
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
#endif
glFlush();
//some additional debugging info
#ifdef PRINT_CONTACT_STATISTICS
printf("num manifolds: %i\n",gNumManifold);
printf("num gOverlappingPairs: %i\n",gOverlappingPairs);
printf("num gTotalContactPoints : %i\n",gTotalContactPoints );
#endif //PRINT_CONTACT_STATISTICS
gTotalContactPoints = 0;
glutSwapBuffers();
}
void CcdPhysicsDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_dynamicsWorld->updateAabbs();
renderme();
glFlush();
glutSwapBuffers();
}
///User-defined friction model, the most simple friction model available: no friction
float myFrictionModel( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo )
{
//don't do any friction
return 0.f;
}
void CcdPhysicsDemo::initPhysics()
{
#ifdef DO_BENCHMARK_PYRAMIDS
m_azi = 90.f;
#endif //DO_BENCHMARK_PYRAMIDS
btCollisionDispatcher* dispatcher=0;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef USE_WIN32_THREADING
int maxNumOutstandingTasks = 4;//number of maximum outstanding tasks
Win32ThreadSupport* threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"collision",
processCollisionTask,
createCollisionLocalStoreMemory,
maxNumOutstandingTasks));
#else
///todo other platform threading
///Playstation 3 SPU (SPURS) version is available through PS3 Devnet
///Libspe2 SPU support will be available soon
///pthreads version
///you can hook it up to your custom task scheduler by deriving from btThreadSupportInterface
#endif
dispatcher = new SpuGatheringCollisionDispatcher(threadSupportCollision,maxNumOutstandingTasks);
// dispatcher = new btCollisionDispatcher();
#else
btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration();
dispatcher = new btCollisionDispatcher(collisionConfiguration);
#endif //USE_PARALLEL_DISPATCHER
#ifdef USE_CUSTOM_NEAR_CALLBACK
//this is optional
dispatcher->setNearCallback(customNearCallback);
#endif
btVector3 worldAabbMin(-1000,-1000,-1000);
btVector3 worldAabbMax(1000,1000,1000);
btBroadphaseInterface* broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
/// For large worlds or over 16384 objects, use the bt32BitAxisSweep3 broadphase
// btBroadphaseInterface* broadphase = new bt32BitAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
/// When trying to debug broadphase issues, try to use the btSimpleBroadphase
// btBroadphaseInterface* broadphase = new btSimpleBroadphase;
#ifdef REGISTER_CUSTOM_COLLISION_ALGORITHM
dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,SPHERE_SHAPE_PROXYTYPE,new btSphereSphereCollisionAlgorithm::CreateFunc);
//box-box is in Extras/AlternativeCollisionAlgorithms:it requires inclusion of those files
#ifdef REGISTER_BOX_BOX
dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,new BoxBoxCollisionAlgorithm::CreateFunc);
#endif //REGISTER_BOX_BOX
dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,TRIANGLE_SHAPE_PROXYTYPE,new btSphereTriangleCollisionAlgorithm::CreateFunc);
btSphereTriangleCollisionAlgorithm::CreateFunc* triangleSphereCF = new btSphereTriangleCollisionAlgorithm::CreateFunc;
triangleSphereCF->m_swapped = true;
dispatcher->registerCollisionCreateFunc(TRIANGLE_SHAPE_PROXYTYPE,SPHERE_SHAPE_PROXYTYPE,triangleSphereCF);
#endif //REGISTER_CUSTOM_COLLISION_ALGORITHM
#ifdef COMPARE_WITH_QUICKSTEP
btConstraintSolver* solver = new OdeConstraintSolver();
#else
#ifdef USE_PARALLEL_SOLVER
Win32ThreadSupport* threadSupportSolver = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"solver",
processSolverTask,
createSolverLocalStoreMemory,
maxNumOutstandingTasks));
btConstraintSolver* solver = new btParallelSequentialImpulseSolver(threadSupportSolver,maxNumOutstandingTasks);
#else
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver;
//default solverMode is SOLVER_RANDMIZE_ORDER. Warmstarting seems not to improve convergence, see
//solver->setSolverMode(btSequentialImpulseConstraintSolver::SOLVER_USE_WARMSTARTING | btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
#endif //USE_PARALLEL_SOLVER
#endif
#ifdef USER_DEFINED_FRICTION_MODEL
//user defined friction model is not supported in 'cache friendly' solver yet, so switch to old solver
solver->setSolverMode(btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
#endif //USER_DEFINED_FRICTION_MODEL
m_dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,broadphase,solver);
m_dynamicsWorld->getDispatchInfo().m_enableSPU = true;
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
m_dynamicsWorld->setDebugDrawer(&debugDrawer);
#ifdef USER_DEFINED_FRICTION_MODEL
{
//solver->setContactSolverFunc(ContactSolverFunc func,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
solver->SetFrictionSolverFunc(myFrictionModel,DEFAULT_CONTACT_SOLVER_TYPE,USER_CONTACT_SOLVER_TYPE1);
solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,USER_CONTACT_SOLVER_TYPE1);
//m_physicsEnvironmentPtr->setNumIterations(2);
}
#endif //USER_DEFINED_FRICTION_MODEL
int i;
btTransform tr;
tr.setIdentity();
for (i=0;i<gNumObjects;i++)
{
if (i>0)
{
shapeIndex[i] = 1;//sphere
}
else
shapeIndex[i] = 0;
}
if (useCompound)
{
btCompoundShape* compoundShape = new btCompoundShape();
btCollisionShape* oldShape = shapePtr[1];
shapePtr[1] = compoundShape;
btVector3 sphereOffset(0,0,2);
comOffset.setIdentity();
#ifdef CENTER_OF_MASS_SHIFT
comOffset.setOrigin(comOffsetVec);
compoundShape->addChildShape(comOffset,oldShape);
#else
compoundShape->addChildShape(tr,oldShape);
tr.setOrigin(sphereOffset);
compoundShape->addChildShape(tr,new btSphereShape(0.9));
#endif
}
#ifdef DO_WALL
for (i=0;i<gNumObjects;i++)
{
btCollisionShape* shape = shapePtr[shapeIndex[i]];
shape->setMargin(gCollisionMargin);
bool isDyna = i>0;
btTransform trans;
trans.setIdentity();
if (i>0)
{
//stack them
int colsize = 10;
int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS);
int row2 = row;
int col = (i)%(colsize)-colsize/2;
if (col>3)
{
col=11;
row2 |=1;
}
btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS,
row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0);
trans.setOrigin(pos);
} else
{
trans.setOrigin(btVector3(0,EXTRA_HEIGHT-CUBE_HALF_EXTENTS,0));
}
float mass = 1.f;
if (!isDyna)
mass = 0.f;
btRigidBody* body = localCreateRigidBody(mass,trans,shape);
#ifdef USE_KINEMATIC_GROUND
if (mass == 0.f)
{
body->setCollisionFlags( body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
body->setActivationState(DISABLE_DEACTIVATION);
}
#endif //USE_KINEMATIC_GROUND
// Only do CCD if motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS
body->setCcdSquareMotionThreshold( CUBE_HALF_EXTENTS );
//Experimental: better estimation of CCD Time of Impact:
body->setCcdSweptSphereRadius( 0.2*CUBE_HALF_EXTENTS );
#ifdef USER_DEFINED_FRICTION_MODEL
///Advanced use: override the friction solver
body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1;
#endif //USER_DEFINED_FRICTION_MODEL
}
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
btTransform trans;
trans.setIdentity();
btScalar halfExtents = CUBE_HALF_EXTENTS;
trans.setOrigin(btVector3(0,-halfExtents,0));
localCreateRigidBody(0.f,trans,shapePtr[shapeIndex[0]]);
int numWalls = 15;
int wallHeight = 15;
float wallDistance = 3;
for (int i=0;i<numWalls;i++)
{
float zPos = (i-numWalls/2) * wallDistance;
createStack(shapePtr[shapeIndex[1]],halfExtents,wallHeight,zPos);
}
// createStack(shapePtr[shapeIndex[1]],halfExtends,20,10);
// createStack(shapePtr[shapeIndex[1]],halfExtends,20,20);
#define DESTROYER_BALL 1
#ifdef DESTROYER_BALL
btTransform sphereTrans;
sphereTrans.setIdentity();
sphereTrans.setOrigin(btVector3(0,2,40));
btSphereShape* ball = new btSphereShape(2.f);
btRigidBody* ballBody = localCreateRigidBody(10000.f,sphereTrans,ball);
ballBody->setLinearVelocity(btVector3(0,0,-10));
#endif
#endif //DO_BENCHMARK_PYRAMIDS
// clientResetScene();
}