Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
683 lines
25 KiB
C++
683 lines
25 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CHOLMODSUPPORT_H
|
|
#define EIGEN_CHOLMODSUPPORT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<typename Scalar> struct cholmod_configure_matrix;
|
|
|
|
template<> struct cholmod_configure_matrix<double> {
|
|
template<typename CholmodType>
|
|
static void run(CholmodType& mat) {
|
|
mat.xtype = CHOLMOD_REAL;
|
|
mat.dtype = CHOLMOD_DOUBLE;
|
|
}
|
|
};
|
|
|
|
template<> struct cholmod_configure_matrix<std::complex<double> > {
|
|
template<typename CholmodType>
|
|
static void run(CholmodType& mat) {
|
|
mat.xtype = CHOLMOD_COMPLEX;
|
|
mat.dtype = CHOLMOD_DOUBLE;
|
|
}
|
|
};
|
|
|
|
// Other scalar types are not yet supported by Cholmod
|
|
// template<> struct cholmod_configure_matrix<float> {
|
|
// template<typename CholmodType>
|
|
// static void run(CholmodType& mat) {
|
|
// mat.xtype = CHOLMOD_REAL;
|
|
// mat.dtype = CHOLMOD_SINGLE;
|
|
// }
|
|
// };
|
|
//
|
|
// template<> struct cholmod_configure_matrix<std::complex<float> > {
|
|
// template<typename CholmodType>
|
|
// static void run(CholmodType& mat) {
|
|
// mat.xtype = CHOLMOD_COMPLEX;
|
|
// mat.dtype = CHOLMOD_SINGLE;
|
|
// }
|
|
// };
|
|
|
|
} // namespace internal
|
|
|
|
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
|
* Note that the data are shared.
|
|
*/
|
|
template<typename _Scalar, int _Options, typename _StorageIndex>
|
|
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
|
|
{
|
|
cholmod_sparse res;
|
|
res.nzmax = mat.nonZeros();
|
|
res.nrow = mat.rows();
|
|
res.ncol = mat.cols();
|
|
res.p = mat.outerIndexPtr();
|
|
res.i = mat.innerIndexPtr();
|
|
res.x = mat.valuePtr();
|
|
res.z = 0;
|
|
res.sorted = 1;
|
|
if(mat.isCompressed())
|
|
{
|
|
res.packed = 1;
|
|
res.nz = 0;
|
|
}
|
|
else
|
|
{
|
|
res.packed = 0;
|
|
res.nz = mat.innerNonZeroPtr();
|
|
}
|
|
|
|
res.dtype = 0;
|
|
res.stype = -1;
|
|
|
|
if (internal::is_same<_StorageIndex,int>::value)
|
|
{
|
|
res.itype = CHOLMOD_INT;
|
|
}
|
|
else if (internal::is_same<_StorageIndex,long>::value)
|
|
{
|
|
res.itype = CHOLMOD_LONG;
|
|
}
|
|
else
|
|
{
|
|
eigen_assert(false && "Index type not supported yet");
|
|
}
|
|
|
|
// setup res.xtype
|
|
internal::cholmod_configure_matrix<_Scalar>::run(res);
|
|
|
|
res.stype = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
|
|
{
|
|
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
|
return res;
|
|
}
|
|
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
|
|
{
|
|
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
|
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
|
{
|
|
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
|
|
|
|
if(UpLo==Upper) res.stype = 1;
|
|
if(UpLo==Lower) res.stype = -1;
|
|
// swap stype for rowmajor matrices (only works for real matrices)
|
|
EIGEN_STATIC_ASSERT((_Options & RowMajorBit) == 0 || NumTraits<_Scalar>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
|
if(_Options & RowMajorBit) res.stype *=-1;
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename Derived>
|
|
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
|
typedef typename Derived::Scalar Scalar;
|
|
|
|
cholmod_dense res;
|
|
res.nrow = mat.rows();
|
|
res.ncol = mat.cols();
|
|
res.nzmax = res.nrow * res.ncol;
|
|
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
|
|
res.x = (void*)(mat.derived().data());
|
|
res.z = 0;
|
|
|
|
internal::cholmod_configure_matrix<Scalar>::run(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename Scalar, int Flags, typename StorageIndex>
|
|
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
|
|
{
|
|
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
|
|
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
|
|
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// template specializations for int and long that call the correct cholmod method
|
|
|
|
#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
|
|
template<typename _StorageIndex> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
|
|
template<> inline ret cm_ ## name<long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
|
|
|
|
#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
|
|
template<typename _StorageIndex> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
|
|
template<> inline ret cm_ ## name<long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
|
|
|
|
EIGEN_CHOLMOD_SPECIALIZE0(int, start)
|
|
EIGEN_CHOLMOD_SPECIALIZE0(int, finish)
|
|
|
|
EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L)
|
|
EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense, cholmod_dense*, X)
|
|
EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
|
|
|
|
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
|
|
|
|
template<typename _StorageIndex> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
|
|
template<> inline cholmod_dense* cm_solve<long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
|
|
|
|
template<typename _StorageIndex> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
|
|
template<> inline cholmod_sparse* cm_spsolve<long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
|
|
|
|
template<typename _StorageIndex>
|
|
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
|
|
template<>
|
|
inline int cm_factorize_p<long> (cholmod_sparse* A, double beta[2], long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
|
|
|
|
#undef EIGEN_CHOLMOD_SPECIALIZE0
|
|
#undef EIGEN_CHOLMOD_SPECIALIZE1
|
|
|
|
} // namespace internal
|
|
|
|
|
|
enum CholmodMode {
|
|
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
|
|
};
|
|
|
|
|
|
/** \ingroup CholmodSupport_Module
|
|
* \class CholmodBase
|
|
* \brief The base class for the direct Cholesky factorization of Cholmod
|
|
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
|
|
*/
|
|
template<typename _MatrixType, int _UpLo, typename Derived>
|
|
class CholmodBase : public SparseSolverBase<Derived>
|
|
{
|
|
protected:
|
|
typedef SparseSolverBase<Derived> Base;
|
|
using Base::derived;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
enum { UpLo = _UpLo };
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef MatrixType CholMatrixType;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
enum {
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
public:
|
|
|
|
CholmodBase()
|
|
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
|
|
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
|
|
internal::cm_start<StorageIndex>(m_cholmod);
|
|
}
|
|
|
|
explicit CholmodBase(const MatrixType& matrix)
|
|
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
|
|
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
|
|
internal::cm_start<StorageIndex>(m_cholmod);
|
|
compute(matrix);
|
|
}
|
|
|
|
~CholmodBase()
|
|
{
|
|
if(m_cholmodFactor)
|
|
internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
|
|
internal::cm_finish<StorageIndex>(m_cholmod);
|
|
}
|
|
|
|
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
|
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was successful,
|
|
* \c NumericalIssue if the matrix.appears to be negative.
|
|
*/
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
/** Computes the sparse Cholesky decomposition of \a matrix */
|
|
Derived& compute(const MatrixType& matrix)
|
|
{
|
|
analyzePattern(matrix);
|
|
factorize(matrix);
|
|
return derived();
|
|
}
|
|
|
|
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
|
|
*
|
|
* This function is particularly useful when solving for several problems having the same structure.
|
|
*
|
|
* \sa factorize()
|
|
*/
|
|
void analyzePattern(const MatrixType& matrix)
|
|
{
|
|
if(m_cholmodFactor)
|
|
{
|
|
internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
|
|
m_cholmodFactor = 0;
|
|
}
|
|
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
|
m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod);
|
|
|
|
this->m_isInitialized = true;
|
|
this->m_info = Success;
|
|
m_analysisIsOk = true;
|
|
m_factorizationIsOk = false;
|
|
}
|
|
|
|
/** Performs a numeric decomposition of \a matrix
|
|
*
|
|
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
|
|
*
|
|
* \sa analyzePattern()
|
|
*/
|
|
void factorize(const MatrixType& matrix)
|
|
{
|
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
|
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
|
internal::cm_factorize_p<StorageIndex>(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod);
|
|
|
|
// If the factorization failed, minor is the column at which it did. On success minor == n.
|
|
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
|
|
m_factorizationIsOk = true;
|
|
}
|
|
|
|
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
|
* See the Cholmod user guide for details. */
|
|
cholmod_common& cholmod() { return m_cholmod; }
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
|
{
|
|
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
|
const Index size = m_cholmodFactor->n;
|
|
EIGEN_UNUSED_VARIABLE(size);
|
|
eigen_assert(size==b.rows());
|
|
|
|
// Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref.
|
|
Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
|
|
|
|
cholmod_dense b_cd = viewAsCholmod(b_ref);
|
|
cholmod_dense* x_cd = internal::cm_solve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod);
|
|
if(!x_cd)
|
|
{
|
|
this->m_info = NumericalIssue;
|
|
return;
|
|
}
|
|
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
|
// NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve
|
|
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
|
|
internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod);
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename RhsDerived, typename DestDerived>
|
|
void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
|
|
{
|
|
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
|
const Index size = m_cholmodFactor->n;
|
|
EIGEN_UNUSED_VARIABLE(size);
|
|
eigen_assert(size==b.rows());
|
|
|
|
// note: cs stands for Cholmod Sparse
|
|
Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
|
|
cholmod_sparse b_cs = viewAsCholmod(b_ref);
|
|
cholmod_sparse* x_cs = internal::cm_spsolve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod);
|
|
if(!x_cs)
|
|
{
|
|
this->m_info = NumericalIssue;
|
|
return;
|
|
}
|
|
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
|
// NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's sparse solver)
|
|
dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
|
|
internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod);
|
|
}
|
|
#endif // EIGEN_PARSED_BY_DOXYGEN
|
|
|
|
|
|
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
|
|
*
|
|
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
|
|
* \c d_ii = \a offset + \c d_ii
|
|
*
|
|
* The default is \a offset=0.
|
|
*
|
|
* \returns a reference to \c *this.
|
|
*/
|
|
Derived& setShift(const RealScalar& offset)
|
|
{
|
|
m_shiftOffset[0] = double(offset);
|
|
return derived();
|
|
}
|
|
|
|
/** \returns the determinant of the underlying matrix from the current factorization */
|
|
Scalar determinant() const
|
|
{
|
|
using std::exp;
|
|
return exp(logDeterminant());
|
|
}
|
|
|
|
/** \returns the log determinant of the underlying matrix from the current factorization */
|
|
Scalar logDeterminant() const
|
|
{
|
|
using std::log;
|
|
using numext::real;
|
|
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
|
|
|
RealScalar logDet = 0;
|
|
Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
|
|
if (m_cholmodFactor->is_super)
|
|
{
|
|
// Supernodal factorization stored as a packed list of dense column-major blocs,
|
|
// as described by the following structure:
|
|
|
|
// super[k] == index of the first column of the j-th super node
|
|
StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
|
|
// pi[k] == offset to the description of row indices
|
|
StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
|
|
// px[k] == offset to the respective dense block
|
|
StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
|
|
|
|
Index nb_super_nodes = m_cholmodFactor->nsuper;
|
|
for (Index k=0; k < nb_super_nodes; ++k)
|
|
{
|
|
StorageIndex ncols = super[k + 1] - super[k];
|
|
StorageIndex nrows = pi[k + 1] - pi[k];
|
|
|
|
Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
|
|
logDet += sk.real().log().sum();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Simplicial factorization stored as standard CSC matrix.
|
|
StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
|
|
Index size = m_cholmodFactor->n;
|
|
for (Index k=0; k<size; ++k)
|
|
logDet += log(real( x[p[k]] ));
|
|
}
|
|
if (m_cholmodFactor->is_ll)
|
|
logDet *= 2.0;
|
|
return logDet;
|
|
};
|
|
|
|
template<typename Stream>
|
|
void dumpMemory(Stream& /*s*/)
|
|
{}
|
|
|
|
protected:
|
|
mutable cholmod_common m_cholmod;
|
|
cholmod_factor* m_cholmodFactor;
|
|
double m_shiftOffset[2];
|
|
mutable ComputationInfo m_info;
|
|
int m_factorizationIsOk;
|
|
int m_analysisIsOk;
|
|
};
|
|
|
|
/** \ingroup CholmodSupport_Module
|
|
* \class CholmodSimplicialLLT
|
|
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
|
|
* using the Cholmod library.
|
|
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
|
|
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
|
* X and B can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
|
*
|
|
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
|
*
|
|
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
|
|
*/
|
|
template<typename _MatrixType, int _UpLo = Lower>
|
|
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
|
|
{
|
|
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
|
|
using Base::m_cholmod;
|
|
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
|
|
CholmodSimplicialLLT() : Base() { init(); }
|
|
|
|
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
|
|
{
|
|
init();
|
|
this->compute(matrix);
|
|
}
|
|
|
|
~CholmodSimplicialLLT() {}
|
|
protected:
|
|
void init()
|
|
{
|
|
m_cholmod.final_asis = 0;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
m_cholmod.final_ll = 1;
|
|
}
|
|
};
|
|
|
|
|
|
/** \ingroup CholmodSupport_Module
|
|
* \class CholmodSimplicialLDLT
|
|
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
|
|
* using the Cholmod library.
|
|
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
|
|
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
|
* X and B can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
|
*
|
|
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
|
*
|
|
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
|
|
*/
|
|
template<typename _MatrixType, int _UpLo = Lower>
|
|
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
|
|
{
|
|
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
|
|
using Base::m_cholmod;
|
|
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
|
|
CholmodSimplicialLDLT() : Base() { init(); }
|
|
|
|
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
|
|
{
|
|
init();
|
|
this->compute(matrix);
|
|
}
|
|
|
|
~CholmodSimplicialLDLT() {}
|
|
protected:
|
|
void init()
|
|
{
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
}
|
|
};
|
|
|
|
/** \ingroup CholmodSupport_Module
|
|
* \class CholmodSupernodalLLT
|
|
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
|
|
* using the Cholmod library.
|
|
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
|
|
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
|
* X and B can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
|
*
|
|
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
|
*
|
|
* \sa \ref TutorialSparseSolverConcept
|
|
*/
|
|
template<typename _MatrixType, int _UpLo = Lower>
|
|
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
|
|
{
|
|
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
|
|
using Base::m_cholmod;
|
|
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
|
|
CholmodSupernodalLLT() : Base() { init(); }
|
|
|
|
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
|
|
{
|
|
init();
|
|
this->compute(matrix);
|
|
}
|
|
|
|
~CholmodSupernodalLLT() {}
|
|
protected:
|
|
void init()
|
|
{
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
|
}
|
|
};
|
|
|
|
/** \ingroup CholmodSupport_Module
|
|
* \class CholmodDecomposition
|
|
* \brief A general Cholesky factorization and solver based on Cholmod
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
|
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
|
* X and B can be either dense or sparse.
|
|
*
|
|
* This variant permits to change the underlying Cholesky method at runtime.
|
|
* On the other hand, it does not provide access to the result of the factorization.
|
|
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
|
*
|
|
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
|
*
|
|
* \sa \ref TutorialSparseSolverConcept
|
|
*/
|
|
template<typename _MatrixType, int _UpLo = Lower>
|
|
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
|
|
{
|
|
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
|
|
using Base::m_cholmod;
|
|
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
|
|
CholmodDecomposition() : Base() { init(); }
|
|
|
|
CholmodDecomposition(const MatrixType& matrix) : Base()
|
|
{
|
|
init();
|
|
this->compute(matrix);
|
|
}
|
|
|
|
~CholmodDecomposition() {}
|
|
|
|
void setMode(CholmodMode mode)
|
|
{
|
|
switch(mode)
|
|
{
|
|
case CholmodAuto:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_AUTO;
|
|
break;
|
|
case CholmodSimplicialLLt:
|
|
m_cholmod.final_asis = 0;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
m_cholmod.final_ll = 1;
|
|
break;
|
|
case CholmodSupernodalLLt:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
|
break;
|
|
case CholmodLDLt:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
protected:
|
|
void init()
|
|
{
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_AUTO;
|
|
}
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CHOLMODSUPPORT_H
|